Data for "Driving the Herd: Search Engines as Content Influencers" paper

Overview

herding_data

Data for "Driving the Herd: Search Engines as Content Influencers" paper

Dataset description

The collection contains 2250 documents, 30 initial relevant documents (round 0) - located in initial_documents.trectext file. 2100 documents (rounds 1-5) created by competitors. 120 documents are the example documents that were manually promoted in the herding method experiments.

This dataset is divided w.r.t. the different experiments for content effect, described in the paper.

Format: trectext. DOCNO Format: ROUND- - -

Relevance Judgments (qrels):

All documents in the collection were judged for relevance. Annotators were presented with both the title and the description of each TREC topic and were asked to classify a document as relevant if it satisfies the information need stated in the description.

A document judged relevant by less than three annotators was labeled as non-relevant (0). Documents judged relevant by at least three, four or five annotators were labeled as marginally relevant (1), fairly relevant (2) and highly relevant (3), respectively. For each experiment the relevance judgment file has ".rel" suffix.

Quality judgements:

All documents in the collection where judged for quality by five annotators. Annotators were presented with the text of the document and were asked to classify the docuemnt as: (1) Valid, (2) Keyword-stuffed, (3) Spam.

A document is deemed as keyword-stuffed if it contained excessive repetition of words which seemed unnatural or artificially introduced.

A document is considered as spam if its content could not possibly satisfy any information need.

If a document is not spam or keywordstuffed, it is considered as valid. Documents judged valid by at least three, four or five annotators were labeled as marginally high-quality (1), fairly high-quality (2) and highly high-quality (3), respectively. For each experiment the quality judgment file has ".ks" suffix.

Queries

We used 30 of ClueWeb09 queries which can be downloded here: http://trec.nist.gov/data/webmain.html.

Example documents

In the herding method experiment for each query and effect an exapmle document, manifesting the desired content effect, was manually promoted to 1'st place. For each effect the example documents are located at "herding__example_documents.trectext" file. The format of document names is: DOCNO Format: ROUND-00- -EXAMPLEDOC

Subtopic effect experiment

This content effect was tested both in terms of herding and biasing approaches. For each query 2 different subtopics were tested. The subtopics were taken from ClueWeb09 subtopics list. The mapping between qid and the subtopic number which was promoted (and the actual information need manifested by the subtopic) is located at _subtopics_map.txt files (in each relevant directory separetly).

We include relevance judgemnts for each document (competing for a rankings w.r.t a query) w.r.t. to both subtopics promoted for the query. Please note that each document was tested w.r.t. a single subtopic (can be induced by the mapping file) during the experiment. The judgments are for both subtopics for analysis porpuses only. Relevance judgments w.r.t. subtopics name is " _relevance_to_subptopic.rel".

The qrels format is: " ".

Directories

Herding

Document_length_effect

The data contained in this directory is related to the documents created in the document length effect experiment (herding method).

Non_relevance_effect

The data contained in this directory is related to the documents created in the non-relevance effect experiment (herding method).

Query_terms_effect

The data contained in this directory is related to the documents created in the query terms effect experiment (herding method).

Subtopic_effect

The data contained in this directory is related to the documents created in the subtopic effect experiment (herding method).

Biasing

Subtopic_effect

The data contained in this directory is related to the documents created in the subtopic effect experiment (biasing method).

Control

The data contained in this directory is related to the documents created in the control group. That is, no expore of any kind of manipulation for this group.

Dummies

The data contained in this directory is related to the documents taken from Raifer et al '17 dataset. Dummies with docnos "DUMMY_{0,1}" where shared over all groups.

Control group and biasing groups where filled with DUMMY_2 dummies (in the docno) as well.

Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

CFNet(CVPR 2021) This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuch

106 Dec 28, 2022
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Jiacheng Ye 63 Jan 05, 2023
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
Pytorch implementation of CVPR2020 paper “VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation”

VectorNet Re-implementation This is the unofficial pytorch implementation of CVPR2020 paper "VectorNet: Encoding HD Maps and Agent Dynamics from Vecto

120 Jan 06, 2023
GDSC-ML Team Interview Task

GDSC-ML-Team---Interview-Task Task 1 : Clean or Messy room In this task we have to classify the given test images as clean or messy. - Link for datase

Aayush. 1 Jan 19, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

njustkmg 520 Dec 28, 2022
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Daniel Povey 41 Jan 07, 2023
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection

TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection; Accepted by ICCV2021. Note: The complete code (including training and t

S.X.Zhang 84 Dec 13, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022