Data for "Driving the Herd: Search Engines as Content Influencers" paper

Overview

herding_data

Data for "Driving the Herd: Search Engines as Content Influencers" paper

Dataset description

The collection contains 2250 documents, 30 initial relevant documents (round 0) - located in initial_documents.trectext file. 2100 documents (rounds 1-5) created by competitors. 120 documents are the example documents that were manually promoted in the herding method experiments.

This dataset is divided w.r.t. the different experiments for content effect, described in the paper.

Format: trectext. DOCNO Format: ROUND- - -

Relevance Judgments (qrels):

All documents in the collection were judged for relevance. Annotators were presented with both the title and the description of each TREC topic and were asked to classify a document as relevant if it satisfies the information need stated in the description.

A document judged relevant by less than three annotators was labeled as non-relevant (0). Documents judged relevant by at least three, four or five annotators were labeled as marginally relevant (1), fairly relevant (2) and highly relevant (3), respectively. For each experiment the relevance judgment file has ".rel" suffix.

Quality judgements:

All documents in the collection where judged for quality by five annotators. Annotators were presented with the text of the document and were asked to classify the docuemnt as: (1) Valid, (2) Keyword-stuffed, (3) Spam.

A document is deemed as keyword-stuffed if it contained excessive repetition of words which seemed unnatural or artificially introduced.

A document is considered as spam if its content could not possibly satisfy any information need.

If a document is not spam or keywordstuffed, it is considered as valid. Documents judged valid by at least three, four or five annotators were labeled as marginally high-quality (1), fairly high-quality (2) and highly high-quality (3), respectively. For each experiment the quality judgment file has ".ks" suffix.

Queries

We used 30 of ClueWeb09 queries which can be downloded here: http://trec.nist.gov/data/webmain.html.

Example documents

In the herding method experiment for each query and effect an exapmle document, manifesting the desired content effect, was manually promoted to 1'st place. For each effect the example documents are located at "herding__example_documents.trectext" file. The format of document names is: DOCNO Format: ROUND-00- -EXAMPLEDOC

Subtopic effect experiment

This content effect was tested both in terms of herding and biasing approaches. For each query 2 different subtopics were tested. The subtopics were taken from ClueWeb09 subtopics list. The mapping between qid and the subtopic number which was promoted (and the actual information need manifested by the subtopic) is located at _subtopics_map.txt files (in each relevant directory separetly).

We include relevance judgemnts for each document (competing for a rankings w.r.t a query) w.r.t. to both subtopics promoted for the query. Please note that each document was tested w.r.t. a single subtopic (can be induced by the mapping file) during the experiment. The judgments are for both subtopics for analysis porpuses only. Relevance judgments w.r.t. subtopics name is " _relevance_to_subptopic.rel".

The qrels format is: " ".

Directories

Herding

Document_length_effect

The data contained in this directory is related to the documents created in the document length effect experiment (herding method).

Non_relevance_effect

The data contained in this directory is related to the documents created in the non-relevance effect experiment (herding method).

Query_terms_effect

The data contained in this directory is related to the documents created in the query terms effect experiment (herding method).

Subtopic_effect

The data contained in this directory is related to the documents created in the subtopic effect experiment (herding method).

Biasing

Subtopic_effect

The data contained in this directory is related to the documents created in the subtopic effect experiment (biasing method).

Control

The data contained in this directory is related to the documents created in the control group. That is, no expore of any kind of manipulation for this group.

Dummies

The data contained in this directory is related to the documents taken from Raifer et al '17 dataset. Dummies with docnos "DUMMY_{0,1}" where shared over all groups.

Control group and biasing groups where filled with DUMMY_2 dummies (in the docno) as well.

[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa

76 Dec 07, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

GT-SALT 36 Dec 02, 2022
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022