Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Overview

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

YOLOv5 with alpha-IoU losses implemented in PyTorch.

Example results on the test set of PASCAL VOC 2007 using YOLOv5s trained by the vanilla IoU loss (top row) and the alpha-IoU loss with alpha=3 (bottom row). The alpha-IoU loss performs better than the vanilla IoU loss because it can localize objects more accurately (image 1 and 2), thus can detect more true positive objects (image 3 to 5) and fewer false positive objects (image 6 and 7).

Example results on the val set of MS COCO 2017 using YOLOv5s trained by the vanilla IoU loss (top row) and the alpha-IoU loss with alpha=3 (bottom row). The alpha-IoU loss performs better than the vanilla IoU loss because it can localize objects more accurately (image 1), thus can detect more true positive objects (image 2 to 5) and fewer false positive objects (image 4 to 7). Note that image 4 and 5 detect both more true positive and fewer false positive objects.

Citation

If you use our method, please consider citing:

@inproceedings{Jiabo_Alpha-IoU,
  author    = {He, Jiabo and Erfani, Sarah and Ma, Xingjun and Bailey, James and Chi, Ying and Hua, Xian-Sheng},
  title     = {Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression},
  booktitle = {NeurIPS},
  year      = {2021},
}

Modifications

This repository is a fork of ultralytics/yolov5, with an implementation of alpha-IoU losses while keeping the code as close to the original as possible.

Alpha-IoU Losses

Alpha-IoU losses can be configured in Line 131 of utils/loss.py, functionesd as 'bbox_alpha_iou'. The alpha values and types of losses (e.g., IoU, GIoU, DIoU, CIoU) can be selected in this function, which are defined in utils/general.py. Note that we should use a small constant epsilon to avoid torch.pow(0, alpha) or denominator=0.

Install

Python>=3.6.0 is required with all requirements.txt installed including PyTorch>=1.7:

$ git clone https://github.com/Jacobi93/Alpha-IoU
$ cd Alpha-IoU
$ pip install -r requirements.txt

Configurations

Configuration files can be found in data. We do not change either 'voc.yaml' or 'coco.yaml' used in the original repository. However, we could do more experiments. E.g.,

voc25.yaml # randomly use 25% PASCAL VOC as the training set
voc50.yaml # randomly use 50% PASCAL VOC as the training set

Code for generating different small training sets is in generate_small_sets.py. Code for generating different noisy labels is in generate_noisy_labels.py, and we should change the 'img2label_paths' function in utils/datasets.py accordingly.

Implementation Commands

For detailed installation instruction and network training options, please take a look at the README file or issue of ultralytics/yolov5. Following are sample commands we used for training and testing YOLOv5 with alpha-IoU, with more samples in instruction.txt.

python train.py --data voc.yaml --hyp hyp.scratch.yaml --cfg yolov5s.yaml --batch-size 64 --epochs 300 --device '0'
python test.py --data voc.yaml --img 640 --conf 0.001 --weights 'runs/train/voc_yolov5s_iou/weights/best.pt' --device '0'
python detect.py --source ../VOC/images/detect500 --weights 'runs/train/voc_yolov5s_iou/weights/best.pt' --conf 0.25

We can also randomly generate some images for detection and visualization results in generate_detect_images.py.

Pretrained Weights

Here are some pretrained models using the configurations in this repository, with alpha=3 in all experiments. Details of these pretrained models can be found in runs/train. All results are tested using 'weights/best.pt' for each experiment. It is a very simple yet effective method so that people is able to quickly apply our method to existing models following the 'bbox_alpha_iou' function in utils/general.py. Note that YOLOv5 has been updated for many versions and all pretrained models in this repository are obtained based on the YOLOv5 version 4.0, where details of all versions for YOLOv5 can be found. Researchers are also welcome to apply our method to other object detection models, e.g., Faster R-CNN, DETR, etc.

Owner
Jacobi(Jiabo He)
Jacobi(Jiabo He)
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
A Topic Modeling toolbox

Topik A Topic Modeling toolbox. Introduction The aim of topik is to provide a full suite and high-level interface for anyone interested in applying to

Anaconda, Inc. (formerly Continuum Analytics, Inc.) 93 Dec 01, 2022
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.

Microsoft 7.6k Jan 01, 2023
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
SlotRefine: A Fast Non-Autoregressive Model forJoint Intent Detection and Slot Filling

SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling Reference Main paper to be cited (Di Wu et al., 2020) @article

Moore 34 Nov 03, 2022
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.

GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector

Chengwei <a href=[email protected]"> 189 Dec 25, 2022
RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022