Official PyTorch implementation of Spatial Dependency Networks.

Related tags

Deep Learningsdn
Overview

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling



Example of SDN-VAE generated images.

Method Description

Spatial dependency network (SDN) is a novel neural architecture. It is based on spatial dependency layers which are designed for stacking deep neural networks that produce images e.g. generative models such as VAEs or GANs or segmentation, super-resolution and image-to-image-translation neural networks. SDNs improve upon celebrated CNNs by explicitly modeling spatial dependencies between feature vectors at each level of a deep neural network pipeline. Spatial dependency layers (i) explicitly introduce the inductive bias of spatial coherence; and (ii) offer improved modeling of long-range dependencies due to the unbounded receptive field. We applied SDN to two variants of VAE, one which we used to model image density (SDN-VAE) and one which we used to learn better disentangled representations. More generally, spatial dependency layers can be used as a drop-in replacement for convolutional layers in any image-generation-related tasks.

Graphical model of SDN layer.

Code Structure

.
├── checkpoints/               # where the model checkpoints will be stored
├── data/
     ├── ImageNet32/           # where ImageNet32 data is stored
     ├── CelebAHQ256/          # where Celeb data is stored
     ├── 3DShapes/             # where 3DShapes data is stored
     ├── lmdb_datasets.py      # LMDB data loading borrowed from https://github.com/NVlabs/NVAE
     ├── get_dataset.py        # auxiliary script for fetching data sets
├── figs/                      # figures from the paper
├── lib/
     ├── DensityVAE            # SDN-VAE which we used for density estimation
     ├── DisentanglementVAE    # VAE which we used for disentanglement
     ├── nn.py                 # The script which contains SDN and other neural net modules
     ├── probability.py        # probability models
     ├── utils.py              # utility functions
 ├── train.py                  # generic training script
 ├── evaluate.py               # the script for evaluation of trained models
 ├── train_cifar.sh            # for reproducing CIFAR10 experiments
 ├── train_celeb.sh            # for reproducing CelebAHQ256 experiments
 ├── train_imagenet.sh         # for reproducing ImageNet32 experiments
 ├── train_3dshapes.sh         # for reproducing 3DShapes experiments
 ├── requirements.txt
 ├── LICENSE
 └── README.md

Applying SDN layers to your neural network

To apply SDN layers to your framework it is sufficient that you integrate the 'lib/nn.py' file into your code. You can then import and utilize SDNLayer or ResSDNLayer (the residual variant) in the same way convolutional layer is utilized. Apart from PyTorch, no additional packages are required.

Tips & Tricks

If you would like to integrate SDN into your neural network, we recommend the following:

  • first design and debug your framework using vanilla CNN layers.
  • replace CNN layers one-by-one. Start with the lowest scale e.g. 4x4 or 8x8 to speed up debugging.
  • start with 1 or 2 directions, and then later on try using 4 directions.
  • larger number of features per SDN layers implies more expressive model which is more powerful but prone to overfitting.
  • a good idea is to use smaller number of SDN features on smaller scales and larger on larger scales.

Reproducing the experiments from the paper

Common to all experiments, you will need to install PyTorch and PyTorchLightning. The default logging system is based on Wandb but this can be changed in 'train.py'. In case you decide to use Wandb, you will need to install it and then login into your account: Follow a very simple procedure described here. To reproduce density estimation experiments you will need 8 TeslaV100 GPUs with 32Gb of memory. One way to alleviate high memory requirements is to accumulate gradient batches, however, the training will take much longer in that case. By default, you will need hardware that supports automatic mixed precision. In case your hardware does not support this, you will need to reduce the batch size, however note that the results will slightly deteriorate and that you will possibly need to reduce the learning rate too to avoid NaN values. For the disentanglement experiments, you will need a single GPU with >10Gb of memory. To install all the requirements use:

pip install -r requirements.txt

Note of caution: Ensure the right version of PyTorchLightning is used. We found multiple issues in the newer versions.

CIFAR10

The data will be automatically downloaded through PyTorch. To run the baselines that reproduce the results from the paper use:

bash train_cifar.sh
ImageNet32

To obtain the dataset go into the folder 'data/ImageNet32' and then run

bash get_imagenet_data.sh

To reproduce the experiments run:

bash train_imagenet.sh
CelebAHQ256

To obtain the dataset go into the folder 'data/CelebAHQ256' and then run

bash get_celeb_data.sh

The script is adapted from NVAE repo and is based on GLOW dataset. To reproduce the experiments run:

bash train_celeb.sh
3DShapes

To obtain the dataset follow the instructions on this GitHub repo. Place it into the 'data/3DShapes' directory. To reproduce the experiments run:

bash train_3dshapes.sh

Evaluation of trained models

To perform post hoc evaluation of your trained models, use 'evaluate.py' script and select flags corresponding to the evaluation task and the model you want to use. The evaluation can be performed on a single GPU of any type, though note that the batch size needs to be modified dependent on the available GPU memory. For the CelebAHQ256 dataset, you can download the checkpoint which contains one of the pre-trained models that we used in the paper from this link. For example, you can evaluate elbo and generate random samples by running:

python3 evaluate.py --model CelebAHQ256 --elbo --sampling

Citation

Please cite our paper if you use our code or if you re-implement our method:

@conference{miladinovic21sdn,
  title = {Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling},
  author = {Miladinović, {\DJ}or{\dj}e and Stanić, Aleksandar and Bauer, Stefan and Schmidhuber, J{\"u}rgen and Buhmann, Joachim M.},
  booktitle = {9th International Conference on Learning Representations (ICLR 2021)},
  month = may,
  year = {2021},
  month_numeric = {5}
}

Note that you might need to include the following line in your latex file:

\usepackage[T1]{fontenc}
Owner
Djordje Miladinovic
Machine learning R&D.
Djordje Miladinovic
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

Yabin Zhang 26 Dec 26, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 09, 2023
U-Time: A Fully Convolutional Network for Time Series Segmentation

U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig

Mathias Perslev 176 Dec 19, 2022
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
Transfer Learning for Pose Estimation of Illustrated Characters

bizarre-pose-estimator Transfer Learning for Pose Estimation of Illustrated Characters Shuhong Chen *, Matthias Zwicker * WACV2022 [arxiv] [video] [po

Shuhong Chen 142 Dec 28, 2022