UMPNet: Universal Manipulation Policy Network for Articulated Objects

Overview

UMPNet: Universal Manipulation Policy Network for Articulated Objects

Zhenjia Xu, Zhanpeng He, Shuran Song
Columbia University
Robotics and Automation Letters (RA-L) / ICRA 2022

Project Page | Video | arXiv

Overview

This repo contains the PyTorch implementation for paper "UMPNet: Universal Manipulation Policy Network for Articulated Objects".

teaser

Content

Prerequisites

The code is built with Python 3.6. Libraries are listed in requirements.txt and can be installed with pip by:

pip install -r requirements.txt

Data Preparation

Prepare object URDF and pretrained model.

Download, unzip, and organize as follows:

/umpnet
    /mobility_dataset
    /pretrained
    ...

Testing

Test with GUI

There are also two modes of testing: exploration and manipulation.

# Open-ended state exploration
python test_gui.py --mode exploration --category CATEGORY

# Goal conditioned manipulation
python test_gui.py --mode manipulation --category CATEGORY

Here CATEGORY can be chosen from:

  • training categories]: Refrigerator, FoldingChair, Laptop, Stapler, TrashCan, Microwave, Toilet, Window, StorageFurniture, Switch, Kettle, Toy
  • [Testing categories]: Box, Phone, Dishwasher, Safe, Oven, WashingMachine, Table, KitchenPot, Bucket, Door

teaser

Quantitative Evaluation

There are also two modes of testing: exploration and manipulation.

# Open-ended state exploration
python test_quantitative.py --mode exploration

# Goal conditioned manipulation
python test_quantitative.py --mode manipulation

By default, it will run quantitative evaluation for each category. You can modify pool_list(L91) to run evaluation for a specific category.

Training

Hyper-parameters mentioned in paper are provided in default arguments.

python train.py --exp EXP_NAME

Then a directory will be created at exp/EXP_NAME, in which checkpoints, visualization, and replay buffer will be stored.

BibTeX

@article{xu2022umpnet,
  title={UMPNet: Universal manipulation policy network for articulated objects},
  author={Xu, Zhenjia and Zhanpeng, He and Song, Shuran},
  journal={IEEE Robotics and Automation Letters},
  year={2022},
  publisher={IEEE}
}

License

This repository is released under the MIT license. See LICENSE for additional details.

Acknowledgement

Owner
Columbia Artificial Intelligence and Robotics Lab
We develop algorithms that enable intelligent systems to learn from their interactions with the physical world to execute complex tasks and assist people
Columbia Artificial Intelligence and Robotics Lab
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

494 Dec 29, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022