An all-in-one application to visualize multiple different local path planning algorithms

Overview

Table of Contents

Local Planner Visualization Project (LPVP)

LPVP serves to provide a single application to visualize numerous different local planner algorithms used in Autonomous Vehicle path planning and mobile robotics. The application provides customizable parameters to better understand the inner workings of each algorithm and explore their strengths and drawbacks. It is written in Python and uses Pygame to render the visualizations.

App Preview

Features

  • Multiple Local Planner Algorithms
    • Probabilistic Roadmap
    • RRT
    • Potential Field
  • Multiple Graph Search Algorithms
    • Dijkstra's Shortest Path
    • A* Search
    • Greedy Best First Search
  • Graph Search visualization
  • Random obstacle generation with customizable obstacle count
  • Drag and drop obstacle generation
  • Drag and drop customizable start/end pose
  • Customizable Parameters for each planner algorithm
    • Probabilistic Roadmap
      • Sample Size
      • K-Neighbours
      • Graph Search algorithm
    • RRT
      • Path goal bias
    • Potential Field
      • Virtual Field toggle
  • Support for additional planner and search algorithms

Installation/Usage

The project is written in Python3, and uses pygame to handle the visualizations and pygame_gui for the gui. numpy is used for calculations for the potential field planner.

  1. Clone the repo
git clone https://github.com/abdurj/Local-Planner-Visualization-Project.git
  1. Install Dependencies
  pip3 install pygame pygame_gui numpy
  cd Local-Planner-Visualization-Project
  1. Run the program
python3 base.py

Local Planners

Probabilistic Roadmap (PRM)

The probabilistic roadmap planner is a sampling based planner that operates in 3 stages, and searches a constructed graph network to find the path between the start and end configuration. This approach is heavy on pre-processing, as it needs to generate the network, however after the preprocessing is done, it can quickly search the constructed network for any start and goal pose configuration without needing to restart. The PRM excels in solving motion planning problems in high dimensional C-Spaces, for example: a robot with many joints. However this project demonstrates a PRM acting in a 2D C-Space.

1. Sampling Stage

During the sampling stage the planner generates N samples from the free C-Space. In this project, the samples are generated by uniformly sampling the C-Space, and if the sample does not collide with any object, it is added as a Node in the roadmap. The PRM isn't limited to uniform sampling techniques, non-uniform sampling techniques can be used to better model the C-Space.

Non-uniform sampling methods are planned for a future release

App Preview

2. Creating the roadmap

In the next stage, the planner finds the K closest neighbours for each node. It then uses a simple local path planner to connect the node with it's neighbour nodes without trying to avoid any obstacles. This is done by simply creating a straight line between the nodes. If this line is collision free; an edge is created between the nodes.

App Preview

3. Searching the Roadmap

After connecting all nodes with its K closest neighbours, a resulting graph network will have been created. This network can be searched with a graph search algorithm. The currently supported graph search algorithms are:

  • Dijkstra's Shortest Path
  • A* Search
  • Greedy Best First Search

More search algorithms are planned for a future release.

App Preview

Rapidly-exploring Random Tree (RRT)

The rapidly-exploring random tree planner is another sampling based planner that explores the C-space by growing a tree rooted at the starting configuration. It then randomly samples the free c-space, and attempts to connect the random sample with the nearest node in the tree. The length of the connection is limited by a growth factor, or "step size". In path planning problems, a bias factor is introduced into the RRT. This bias factor introduces a probability that the random sample will be the goal pose. Increasing the bias factor affects how greedily the tree expands towards the goal. RRT

Potential Field

The potential field planner is adapted from the concept of a charged particle travelling through a charged magnetic field. The goal pose emits a strong attractive force, and the obstacles emit a repulsive force. We can emulate this behaviour by creating a artificial potential field that attracts the robot towards the goal. The goal pose emits a strong attractive field, and each obstacle emits a repulsive field. By following the sum of all fields at each position, we can construct a path towards the goal pose. PF Demo

Virtual Fields

A problem with the potential field planner is that it is easy for the planner to get stuck in local minima traps. Thus the Virtual Field method proposed by Ding Fu-guang et al. in this paper has been implemented to steer the path towards the open free space in the instance where the path is stuck. Virtual Field

Grid Based Planner

Grid based planners model the free C-Space as a grid. From there a graph search algorithm is used to search the graph for a path from the start and end pose.

A grid based planner is planned for a future release.

Current Issues

  • Updating starting configuration in PRM doesn't clear search visualization
  • Virtual Field pushes path into obstacles in certain scenarios

Contributing

Contributions are always welcome!

See contributing.md for ways to get started.

Roadmap

  • Add Grid Based Local Planner
  • Add variable growth factor to RRT planner
  • Add new local planners: RRT* / D* / Voronoi Roadmap
  • Add dynamic trajectory generation visualization as shown in this video

Authors

Project Setup / Algorithm Implementations

Styling / UI / Design

Acknowledgements

PRM

  • Becker, A. (2020, November 23). PRM: Probabilistic Roadmap Method in 3D and with 7-DOF robot arm. YouTube
  • Modern Robotics, Chapter 10.5: Sampling Methods for Motion Planning (Part 1 of 2). (2018, March 16). YouTube

RRT

  • Algobotics: Python RRT Path Planning playlist. Youtube
  • RRT, RRT* & Random Trees. (2018, November 21). YouTube

Potential Field

  • Ding Fu-guang, Jiao Peng, Bian Xin-qian and Wang Hong-jian, "AUV local path planning based on virtual potential field," IEEE International Conference Mechatronics and Automation, 2005, 2005, pp. 1711-1716 Vol. 4, doi: 10.1109/ICMA.2005.1626816. URL
  • Michael A. Goodrich, Potential Fields Tutorial URL
  • Safadi, H. (2007, April 18). Local Path Planning Using Virtual Potential Field. URL
  • Lehett, J, Pytential Fields Github Repo

License

This project is licensed under the terms of the MIT license.

You might also like...
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Simple streamlit app to demonstrate HERE Tour Planning
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Related resources for our EMNLP 2021 paper Plan-then-Generate: Controlled Data-to-Text Generation via Planning

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

 GNPy: Optical Route Planning and DWDM Network Optimization
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Releases(v1.0)
  • v1.0(Jul 26, 2021)

    Initial release of the LPVP project. Adds 3 Local Planner Algorithms: Probabilistic Roadmap, RRT, Potential Field Adds 3 Graph Search algorithms: Dijkstra's, A*, Greedy BFS

    Source code(tar.gz)
    Source code(zip)
Owner
Abdur Javaid
UW Software Engineering 2025
Abdur Javaid
A blender add-on that automatically re-aligns wrong axis objects.

Auto Align A blender add-on that automatically re-aligns wrong axis objects. Usage There are three options available in the 3D Viewport Sidebar It

29 Nov 25, 2022
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar

Tyler Hayes 72 Nov 27, 2022
Pytorch version of VidLanKD: Improving Language Understanding viaVideo-Distilled Knowledge Transfer

VidLanKD Implementation of VidLanKD: Improving Language Understanding via Video-Distilled Knowledge Transfer by Zineng Tang, Jaemin Cho, Hao Tan, Mohi

Zineng Tang 54 Dec 20, 2022
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022
An Straight Dilated Network with Wavelet for image Deblurring

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(

FlyEgle 41 Jan 04, 2023
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
AI drive app that can help user become beautiful.

爱美丽 Beauty 简体中文 Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
Single cell current best practices tutorial case study for the paper:Luecken and Theis, "Current best practices in single-cell RNA-seq analysis: a tutorial"

Scripts for "Current best-practices in single-cell RNA-seq: a tutorial" This repository is complementary to the publication: M.D. Luecken, F.J. Theis,

Theis Lab 968 Dec 28, 2022