An all-in-one application to visualize multiple different local path planning algorithms

Overview

Table of Contents

Local Planner Visualization Project (LPVP)

LPVP serves to provide a single application to visualize numerous different local planner algorithms used in Autonomous Vehicle path planning and mobile robotics. The application provides customizable parameters to better understand the inner workings of each algorithm and explore their strengths and drawbacks. It is written in Python and uses Pygame to render the visualizations.

App Preview

Features

  • Multiple Local Planner Algorithms
    • Probabilistic Roadmap
    • RRT
    • Potential Field
  • Multiple Graph Search Algorithms
    • Dijkstra's Shortest Path
    • A* Search
    • Greedy Best First Search
  • Graph Search visualization
  • Random obstacle generation with customizable obstacle count
  • Drag and drop obstacle generation
  • Drag and drop customizable start/end pose
  • Customizable Parameters for each planner algorithm
    • Probabilistic Roadmap
      • Sample Size
      • K-Neighbours
      • Graph Search algorithm
    • RRT
      • Path goal bias
    • Potential Field
      • Virtual Field toggle
  • Support for additional planner and search algorithms

Installation/Usage

The project is written in Python3, and uses pygame to handle the visualizations and pygame_gui for the gui. numpy is used for calculations for the potential field planner.

  1. Clone the repo
git clone https://github.com/abdurj/Local-Planner-Visualization-Project.git
  1. Install Dependencies
  pip3 install pygame pygame_gui numpy
  cd Local-Planner-Visualization-Project
  1. Run the program
python3 base.py

Local Planners

Probabilistic Roadmap (PRM)

The probabilistic roadmap planner is a sampling based planner that operates in 3 stages, and searches a constructed graph network to find the path between the start and end configuration. This approach is heavy on pre-processing, as it needs to generate the network, however after the preprocessing is done, it can quickly search the constructed network for any start and goal pose configuration without needing to restart. The PRM excels in solving motion planning problems in high dimensional C-Spaces, for example: a robot with many joints. However this project demonstrates a PRM acting in a 2D C-Space.

1. Sampling Stage

During the sampling stage the planner generates N samples from the free C-Space. In this project, the samples are generated by uniformly sampling the C-Space, and if the sample does not collide with any object, it is added as a Node in the roadmap. The PRM isn't limited to uniform sampling techniques, non-uniform sampling techniques can be used to better model the C-Space.

Non-uniform sampling methods are planned for a future release

App Preview

2. Creating the roadmap

In the next stage, the planner finds the K closest neighbours for each node. It then uses a simple local path planner to connect the node with it's neighbour nodes without trying to avoid any obstacles. This is done by simply creating a straight line between the nodes. If this line is collision free; an edge is created between the nodes.

App Preview

3. Searching the Roadmap

After connecting all nodes with its K closest neighbours, a resulting graph network will have been created. This network can be searched with a graph search algorithm. The currently supported graph search algorithms are:

  • Dijkstra's Shortest Path
  • A* Search
  • Greedy Best First Search

More search algorithms are planned for a future release.

App Preview

Rapidly-exploring Random Tree (RRT)

The rapidly-exploring random tree planner is another sampling based planner that explores the C-space by growing a tree rooted at the starting configuration. It then randomly samples the free c-space, and attempts to connect the random sample with the nearest node in the tree. The length of the connection is limited by a growth factor, or "step size". In path planning problems, a bias factor is introduced into the RRT. This bias factor introduces a probability that the random sample will be the goal pose. Increasing the bias factor affects how greedily the tree expands towards the goal. RRT

Potential Field

The potential field planner is adapted from the concept of a charged particle travelling through a charged magnetic field. The goal pose emits a strong attractive force, and the obstacles emit a repulsive force. We can emulate this behaviour by creating a artificial potential field that attracts the robot towards the goal. The goal pose emits a strong attractive field, and each obstacle emits a repulsive field. By following the sum of all fields at each position, we can construct a path towards the goal pose. PF Demo

Virtual Fields

A problem with the potential field planner is that it is easy for the planner to get stuck in local minima traps. Thus the Virtual Field method proposed by Ding Fu-guang et al. in this paper has been implemented to steer the path towards the open free space in the instance where the path is stuck. Virtual Field

Grid Based Planner

Grid based planners model the free C-Space as a grid. From there a graph search algorithm is used to search the graph for a path from the start and end pose.

A grid based planner is planned for a future release.

Current Issues

  • Updating starting configuration in PRM doesn't clear search visualization
  • Virtual Field pushes path into obstacles in certain scenarios

Contributing

Contributions are always welcome!

See contributing.md for ways to get started.

Roadmap

  • Add Grid Based Local Planner
  • Add variable growth factor to RRT planner
  • Add new local planners: RRT* / D* / Voronoi Roadmap
  • Add dynamic trajectory generation visualization as shown in this video

Authors

Project Setup / Algorithm Implementations

Styling / UI / Design

Acknowledgements

PRM

  • Becker, A. (2020, November 23). PRM: Probabilistic Roadmap Method in 3D and with 7-DOF robot arm. YouTube
  • Modern Robotics, Chapter 10.5: Sampling Methods for Motion Planning (Part 1 of 2). (2018, March 16). YouTube

RRT

  • Algobotics: Python RRT Path Planning playlist. Youtube
  • RRT, RRT* & Random Trees. (2018, November 21). YouTube

Potential Field

  • Ding Fu-guang, Jiao Peng, Bian Xin-qian and Wang Hong-jian, "AUV local path planning based on virtual potential field," IEEE International Conference Mechatronics and Automation, 2005, 2005, pp. 1711-1716 Vol. 4, doi: 10.1109/ICMA.2005.1626816. URL
  • Michael A. Goodrich, Potential Fields Tutorial URL
  • Safadi, H. (2007, April 18). Local Path Planning Using Virtual Potential Field. URL
  • Lehett, J, Pytential Fields Github Repo

License

This project is licensed under the terms of the MIT license.

You might also like...
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Simple streamlit app to demonstrate HERE Tour Planning
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Related resources for our EMNLP 2021 paper Plan-then-Generate: Controlled Data-to-Text Generation via Planning

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

 GNPy: Optical Route Planning and DWDM Network Optimization
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Releases(v1.0)
  • v1.0(Jul 26, 2021)

    Initial release of the LPVP project. Adds 3 Local Planner Algorithms: Probabilistic Roadmap, RRT, Potential Field Adds 3 Graph Search algorithms: Dijkstra's, A*, Greedy BFS

    Source code(tar.gz)
    Source code(zip)
Owner
Abdur Javaid
UW Software Engineering 2025
Abdur Javaid
Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

106 Dec 14, 2022
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch

Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c

Phil Wang 22 Oct 28, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
Emotional conditioned music generation using transformer-based model.

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has b

hung anna 96 Nov 09, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
TalkingHead-1KH is a talking-head dataset consisting of YouTube videos

TalkingHead-1KH Dataset TalkingHead-1KH is a talking-head dataset consisting of YouTube videos, originally created as a benchmark for face-vid2vid: On

173 Dec 29, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
Deep learning models for change detection of remote sensing images

Change Detection Models (Remote Sensing) Python library with Neural Networks for Change Detection based on PyTorch. ⚡ ⚡ ⚡ I am trying to build this pr

Kaiyu Li 176 Dec 24, 2022
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
This repository is for EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpretation Data

InterpretationData This repository is for our EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpr

4 Apr 21, 2022
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022