Ludwig Benchmarking Toolkit

Overview

Ludwig Benchmarking Toolkit

The Ludwig Benchmarking Toolkit is a personalized benchmarking toolkit for running end-to-end benchmark studies across an extensible set of tasks, deep learning models, standard datasets and evaluation metrics.

Getting set-up

To get started, use the following commands to set-up your conda environment.

git clone https://github.com/HazyResearch/ludwig-benchmarking-toolkit.git
cd ludwig-benchmarking-toolkit
conda env create -f environments/{environment-osx.yaml, environment-linux.yaml}
conda activate lbt

Relevant files and directories

experiment-templates/task_template.yaml: Every task (i.e. text classification) will have its owns task template. The template specifies the model architecture (encoder and decoder structure), training parameters, and a hyperopt configuration for the task at hand. A large majority of the values of the template will be populated by the values in the hyperopt_config.yaml file and dataset_metadata.yaml at training time. The sample task template located in experiment-templates/task_template.yaml is for text classification. See sample-task-templates/ for other examples.

experiment-templates/hyperopt_config.yaml: provides a range of values for training parameters and hyperopt params that will populate the hyperopt configuration in the model template

experiment-templates/dataset_metadata.yaml: contains list of all available datasets (and associated metadata) that the hyperparameter optimization can be performed over.

model-configs/: contains all encoder specific yaml files. Each files specifies possible values for relevant encoder parameters that will be optimized over. Each file in this directory adheres to the naming convention {encoder_name}_hyperopt.yaml

hyperopt-experiment-configs/: houses all experiment configs built from the templates specified above (note: this folder will be populated at run-time) and will be used when the hyperopt experiment is called. At a high level, each config file specifies the training and hyperopt information for a (task, dataset, architecture) combination. An example might be (text classification, SST2, BERT)

elasticsearch_config.yaml : this is an optional file that is to be defined if an experiment data will be saved to an elastic database.

USAGE

Command-Line Usage

Running your first TOY experiment:

For testing/setup purposes we have included a toy dataset called toy_agnews. This dataset contains a small set of training, test and validation samples from the original agnews dataset.

Before running a full-scale experiment, we recommend running an experiment locally on the toy dataset:

python experiment_driver.py --run_environment local --datasets toy_agnews --custom_models_list rnn

Running your first REAL experiment:

Steps for configuring + running an experiment:

  1. Declare and configure the search space of all non-model specific training and preprocessing hyperparameters in the experiment-templates/hyperopt_config.yaml file. The parameters specified in this file will be used across all model experiments.

  2. Declare and configure the search space of model specific hyperparameters in the {encoder}_hyperopt.yaml files in ./model_configs

    NOTE:

    • for both (1) and (2) see the Ludwig Hyperparamter Optimization guide to see what parameters for training, preprocessing, and input/ouput features can be used in the hyperopt search
    • if the exectuor type is Ray the list of available search spaces and input format differs slightly than the built-in ludwig types. Please see the Ray Tune search space docs for more information.
  3. Run the following command specifying the datasets, encoders, path to elastic DB index config file, run environment and more:

        python experiment_driver.py \
            --experiment_output_dir  
         
          
            --run_environment {local, gcp}
            --elasticsearch_config 
          
           
            --dataset_cache_dir 
           
            
            --custom_model_list 
            
             
            --datasets 
             
               --resume_existing_exp bool 
             
            
           
          
         

NOTE: Please use python experiment_driver.py -h to see list of available datasets, encoders and args

API Usage

It is also possible to run, customize and experiments using LBTs APIs. In the following section, we describe the three flavors of APIs included in LBT.

experiment API

This API provides an alternative method for running experiments. Note that runnin experiments via the API still requires populating the aforemented configuration files

from lbt.experiments import experiment

experiment(
    models = ['rnn', 'bert'],
    datasets = ['agnews'],
    run_environment = "local",
    elastic_search_config = None,
    resume_existing_exp = False,
)

tools API

This API provides access to two tooling integrations (TextAttack and Robustness Gym (RG)). The TextAttack API can be used to generate adversarial attacks. Moreover, users can use the TextAttack interface to augment data files. The RG API which empowers users to inspect model performance on a set of generic, pre-built slices and to add more slices for their specific datasets and use cases.

from lbt.tools.robustnessgym import RG 
from lbt.tools.textattack import attack, augment

# Robustness Gym API Usage
RG( dataset_name="AGNews",
    models=["bert", "rnn"],
    path_to_dataset="agnews.csv", 
    subpopulations=[ "entities", "positive_words", "negative_words"]))

# TextAttack API Usage
attack(dataset_name="AGNews", path_to_model="agnews/model/rnn_model",
    path_to_dataset="agnews.csv", attack_recipe=["CharSwapAugmenter"])

augment(dataset_name="AGNews", transformations_per_example=1
   path_to_dataset="agnews.csv", augmenter=["WordNetAugmenter"])

visualizations API

This API provides out-of-the-box support for visualizations for learning behavior, model performance, and hyperparameter optimization using the training and evaluation statistics generated during model training

import lbt.visualizations

# compare model performance
compare_performance_viz(
    dataset_name="toy_agnews",
    model_name="rnn",
    output_feature_name="class_index",
)

# compare training and validation trajectory
learning_curves_viz(
    dataset_name="toy_agnews",
    model_name="rnn",
    output_feature_name="class_index",
)

# visualize hyperoptimzation search
hyperopt_viz(
    dataset_name="toy_agnews",
    model_name="rnn",
    output_dir="."
)

EXPERIMENT EXTENSIBILITY

Adding new custom datasets

Adding custom dataset requires creating a new LBTDataset class and adding it to the dataset registry. Creating an LBTDataset object requires implementing three class methods: download, process and load. Please see the the ToyAGNews dataset as an example.

Adding new metrics

Adding custom evaluation metrics requires creating a new LBTMetric class and adding it to the metrics registry. Creating an LBTMetric object requires implementing the run class method which takes as potential inputs a path to a model directory, path to a dataset, training batch size, and training statistics. Please see the pre-built LBT metrics for examples.

ELASTICSEARCH RESEARCH DATABASE

To get credentials to upload experiments to the shared Elasticsearch research database, please fill out this form.

Owner
HazyResearch
We are a CS research group led by Prof. Chris Ré.
HazyResearch
Source code for Task-Aware Variational Adversarial Active Learning

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

27 Nov 23, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
The pytorch implementation of SOKD (BMVC2021).

Semi-Online Knowledge Distillation Implementations of SOKD. Requirements This repo was tested with Python 3.8, PyTorch 1.5.1, torchvision 0.6.1, CUDA

4 Dec 19, 2021
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
Tensor-Based Quantum Machine Learning

TensorLy_Quantum TensorLy-Quantum is a Python library for Tensor-Based Quantum Machine Learning that builds on top of TensorLy and PyTorch. Website: h

TensorLy 85 Dec 03, 2022
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

Umar Khalid 17 Oct 11, 2022
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
darija <-> english dictionary

darija-dictionary Having advanced IT solutions that are well adapted to the Moroccan context passes inevitably through understanding Moroccan dialect.

DODa 102 Jan 01, 2023
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
TalkingHead-1KH is a talking-head dataset consisting of YouTube videos

TalkingHead-1KH Dataset TalkingHead-1KH is a talking-head dataset consisting of YouTube videos, originally created as a benchmark for face-vid2vid: On

173 Dec 29, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
A TensorFlow implementation of FCN-8s

FCN-8s implementation in TensorFlow Contents Overview Examples and demo video Dependencies How to use it Download pre-trained VGG-16 Overview This is

Pierluigi Ferrari 50 Aug 08, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022