PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

Overview

Scene Graph Benchmark in Pytorch

LICENSE Python PyTorch

Our paper Unbiased Scene Graph Generation from Biased Training has been accepted by CVPR 2020 (Oral).

Recent Updates

Contents

  1. Overview
  2. Install the Requirements
  3. Prepare the Dataset
  4. Metrics and Results for our Toolkit
  5. Faster R-CNN Pre-training
  6. Scene Graph Generation as RoI_Head
  7. Training on Scene Graph Generation
  8. Evaluation on Scene Graph Generation
  9. Detect Scene Graphs on Your Custom Images 🌟
  10. Visualize Detected Scene Graphs of Custom Images 🌟
  11. Other Options that May Improve the SGG
  12. Tips and Tricks for TDE on any Unbiased Task
  13. Frequently Asked Questions
  14. Citations

Overview

This project aims to build a new CODEBASE of Scene Graph Generation (SGG), and it is also a Pytorch implementation of the paper Unbiased Scene Graph Generation from Biased Training. The previous widely adopted SGG codebase neural-motifs is detached from the recent development of Faster/Mask R-CNN. Therefore, I decided to build a scene graph benchmark on top of the well-known maskrcnn-benchmark project and define relationship prediction as an additional roi_head. By the way, thanks to their elegant framework, this codebase is much more novice-friendly and easier to read/modify for your own projects than previous neural-motifs framework(at least I hope so). It is a pity that when I was working on this project, the detectron2 had not been released, but I think we can consider maskrcnn-benchmark as a more stable version with less bugs, hahahaha. I also introduce all the old and new metrics used in SGG, and clarify two common misunderstandings in SGG metrics in METRICS.md, which cause abnormal results in some papers.

Benefit from the up-to-date Faster R-CNN in maskrcnn-benchmark, this codebase achieves new state-of-the-art [email protected] on SGCls & SGGen (by 2020.2.16) through the reimplemented VCTree using two 1080ti GPUs and batch size 8:

Models SGGen [email protected] SGGen [email protected] SGGen [email protected] SGCls [email protected] SGCls [email protected] SGCls [email protected] PredCls [email protected] PredCls [email protected] PredCls [email protected]
VCTree 24.53 31.93 36.21 42.77 46.67 47.64 59.02 65.42 67.18

Note that all results of VCTree should be better than what we reported in Unbiased Scene Graph Generation from Biased Training, because we optimized the tree construction network after the publication.

The illustration of the Unbiased SGG from 'Unbiased Scene Graph Generation from Biased Training'

alt text

Installation

Check INSTALL.md for installation instructions.

Dataset

Check DATASET.md for instructions of dataset preprocessing.

Metrics and Results (IMPORTANT)

Explanation of metrics in our toolkit and reported results are given in METRICS.md

Pretrained Models

Since we tested many SGG models in our paper Unbiased Scene Graph Generation from Biased Training, I won't upload all the pretrained SGG models here. However, you can download the pretrained Faster R-CNN we used in the paper, which is the most time consuming step in the whole training process (it took 4 2080ti GPUs). As to the SGG model, you can follow the rest instructions to train your own, which only takes 2 GPUs to train each SGG model. The results should be very close to the reported results given in METRICS.md

After you download the Faster R-CNN model, please extract all the files to the directory /home/username/checkpoints/pretrained_faster_rcnn. To train your own Faster R-CNN model, please follow the next section.

The above pretrained Faster R-CNN model achives 38.52/26.35/28.14 mAp on VG train/val/test set respectively.

Faster R-CNN pre-training

The following command can be used to train your own Faster R-CNN model:

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --master_port 10001 --nproc_per_node=4 tools/detector_pretrain_net.py --config-file "configs/e2e_relation_detector_X_101_32_8_FPN_1x.yaml" SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 DTYPE "float16" SOLVER.MAX_ITER 50000 SOLVER.STEPS "(30000, 45000)" SOLVER.VAL_PERIOD 2000 SOLVER.CHECKPOINT_PERIOD 2000 MODEL.RELATION_ON False OUTPUT_DIR /home/kaihua/checkpoints/pretrained_faster_rcnn SOLVER.PRE_VAL False

where CUDA_VISIBLE_DEVICES and --nproc_per_node represent the id of GPUs and number of GPUs you use, --config-file means the config we use, where you can change other parameters. SOLVER.IMS_PER_BATCH and TEST.IMS_PER_BATCH are the training and testing batch size respectively, DTYPE "float16" enables Automatic Mixed Precision supported by APEX, SOLVER.MAX_ITER is the maximum iteration, SOLVER.STEPS is the steps where we decay the learning rate, SOLVER.VAL_PERIOD and SOLVER.CHECKPOINT_PERIOD are the periods of conducting val and saving checkpoint, MODEL.RELATION_ON means turning on the relationship head or not (since this is the pretraining phase for Faster R-CNN only, we turn off the relationship head), OUTPUT_DIR is the output directory to save checkpoints and log (considering /home/username/checkpoints/pretrained_faster_rcnn), SOLVER.PRE_VAL means whether we conduct validation before training or not.

Scene Graph Generation as RoI_Head

To standardize the SGG, I define scene graph generation as an RoI_Head. Referring to the design of other roi_heads like box_head, I put most of the SGG codes under maskrcnn_benchmark/modeling/roi_heads/relation_head and their calling sequence is as follows:

alt text

Perform training on Scene Graph Generation

There are three standard protocols: (1) Predicate Classification (PredCls): taking ground truth bounding boxes and labels as inputs, (2) Scene Graph Classification (SGCls) : using ground truth bounding boxes without labels, (3) Scene Graph Detection (SGDet): detecting SGs from scratch. We use two switches MODEL.ROI_RELATION_HEAD.USE_GT_BOX and MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL to select the protocols.

For Predicate Classification (PredCls), we need to set:

MODEL.ROI_RELATION_HEAD.USE_GT_BOX True MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL True

For Scene Graph Classification (SGCls):

MODEL.ROI_RELATION_HEAD.USE_GT_BOX True MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False

For Scene Graph Detection (SGDet):

MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False

Predefined Models

We abstract various SGG models to be different relation-head predictors in the file roi_heads/relation_head/roi_relation_predictors.py, which are independent of the Faster R-CNN backbone and relation-head feature extractor. To select our predefined models, you can use MODEL.ROI_RELATION_HEAD.PREDICTOR.

For Neural-MOTIFS Model:

MODEL.ROI_RELATION_HEAD.PREDICTOR MotifPredictor

For Iterative-Message-Passing(IMP) Model (Note that SOLVER.BASE_LR should be changed to 0.001 in SGCls, or the model won't converge):

MODEL.ROI_RELATION_HEAD.PREDICTOR IMPPredictor

For VCTree Model:

MODEL.ROI_RELATION_HEAD.PREDICTOR VCTreePredictor

For our predefined Transformer Model (Note that Transformer Model needs to change SOLVER.BASE_LR to 0.001, SOLVER.SCHEDULE.TYPE to WarmupMultiStepLR, SOLVER.MAX_ITER to 16000, SOLVER.IMS_PER_BATCH to 16, SOLVER.STEPS to (10000, 16000).), which is provided by Jiaxin Shi:

MODEL.ROI_RELATION_HEAD.PREDICTOR TransformerPredictor

For Unbiased-Causal-TDE Model:

MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor

The default settings are under configs/e2e_relation_X_101_32_8_FPN_1x.yaml and maskrcnn_benchmark/config/defaults.py. The priority is command > yaml > defaults.py

Customize Your Own Model

If you want to customize your own model, you can refer maskrcnn-benchmark/modeling/roi_heads/relation_head/model_XXXXX.py and maskrcnn-benchmark/modeling/roi_heads/relation_head/utils_XXXXX.py. You also need to add corresponding nn.Module in maskrcnn-benchmark/modeling/roi_heads/relation_head/roi_relation_predictors.py. Sometimes you may also need to change the inputs & outputs of the module through maskrcnn-benchmark/modeling/roi_heads/relation_head/relation_head.py.

The proposed Causal TDE on Unbiased Scene Graph Generation from Biased Training

As to the Unbiased-Causal-TDE, there are some additional parameters you need to know. MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE is used to select the causal effect analysis type during inference(test), where "none" is original likelihood, "TDE" is total direct effect, "NIE" is natural indirect effect, "TE" is total effect. MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE has two choice "sum" or "gate". Since Unbiased Causal TDE Analysis is model-agnostic, we support Neural-MOTIFS, VCTree and VTransE. MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER is used to select these models for Unbiased Causal Analysis, which has three choices: motifs, vctree, vtranse.

Note that during training, we always set MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE to be 'none', because causal effect analysis is only applicable to the inference/test phase.

Examples of the Training Command

Training Example 1 : (PreCls, Motif Model)

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port 10025 --nproc_per_node=2 tools/relation_train_net.py --config-file "configs/e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX True MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL True MODEL.ROI_RELATION_HEAD.PREDICTOR MotifPredictor SOLVER.IMS_PER_BATCH 12 TEST.IMS_PER_BATCH 2 DTYPE "float16" SOLVER.MAX_ITER 50000 SOLVER.VAL_PERIOD 2000 SOLVER.CHECKPOINT_PERIOD 2000 GLOVE_DIR /home/kaihua/glove MODEL.PRETRAINED_DETECTOR_CKPT /home/kaihua/checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR /home/kaihua/checkpoints/motif-precls-exmp

where GLOVE_DIR is the directory used to save glove initializations, MODEL.PRETRAINED_DETECTOR_CKPT is the pretrained Faster R-CNN model you want to load, OUTPUT_DIR is the output directory used to save checkpoints and the log. Since we use the WarmupReduceLROnPlateau as the learning scheduler for SGG, SOLVER.STEPS is not required anymore.

Training Example 2 : (SGCls, Causal, TDE, SUM Fusion, MOTIFS Model)

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port 10026 --nproc_per_node=2 tools/relation_train_net.py --config-file "configs/e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX True MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs  SOLVER.IMS_PER_BATCH 12 TEST.IMS_PER_BATCH 2 DTYPE "float16" SOLVER.MAX_ITER 50000 SOLVER.VAL_PERIOD 2000 SOLVER.CHECKPOINT_PERIOD 2000 GLOVE_DIR /home/kaihua/glove MODEL.PRETRAINED_DETECTOR_CKPT /home/kaihua/checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR /home/kaihua/checkpoints/causal-motifs-sgcls-exmp

Evaluation

Examples of the Test Command

Test Example 1 : (PreCls, Motif Model)

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --master_port 10027 --nproc_per_node=1 tools/relation_test_net.py --config-file "configs/e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX True MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL True MODEL.ROI_RELATION_HEAD.PREDICTOR MotifPredictor TEST.IMS_PER_BATCH 1 DTYPE "float16" GLOVE_DIR /home/kaihua/glove MODEL.PRETRAINED_DETECTOR_CKPT /home/kaihua/checkpoints/motif-precls-exmp OUTPUT_DIR /home/kaihua/checkpoints/motif-precls-exmp

Test Example 2 : (SGCls, Causal, TDE, SUM Fusion, MOTIFS Model)

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --master_port 10028 --nproc_per_node=1 tools/relation_test_net.py --config-file "configs/e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX True MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE TDE MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs  TEST.IMS_PER_BATCH 1 DTYPE "float16" GLOVE_DIR /home/kaihua/glove MODEL.PRETRAINED_DETECTOR_CKPT /home/kaihua/checkpoints/causal-motifs-sgcls-exmp OUTPUT_DIR /home/kaihua/checkpoints/causal-motifs-sgcls-exmp

Examples of Pretrained Causal MOTIFS-SUM models

Examples of Pretrained Causal MOTIFS-SUM models on SGDet/SGCls/PredCls (batch size 12): (SGDet Download), (SGCls Download), (PredCls Download)

Corresponding Results (The original models used in the paper are lost. These are the fresh ones, so there are some fluctuations on the results. More results can be found in Reported Results):

Models [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
MOTIFS-SGDet-none 25.42 32.45 37.26 4.36 5.83 7.08 0.02 0.08 0.24
MOTIFS-SGDet-TDE 11.92 16.56 20.15 6.58 8.94 10.99 1.54 2.33 3.03
MOTIFS-SGCls-none 36.02 39.25 40.07 6.50 8.02 8.51 1.06 2.18 3.07
MOTIFS-SGCls-TDE 20.47 26.31 28.79 9.80 13.21 15.06 1.91 2.95 4.10
MOTIFS-PredCls-none 59.64 66.11 67.96 11.46 14.60 15.84 5.79 11.02 14.74
MOTIFS-PredCls-TDE 33.38 45.88 51.25 17.85 24.75 28.70 8.28 14.31 18.04

SGDet on Custom Images

Note that evaluation on custum images is only applicable for SGDet model, because PredCls and SGCls model requires additional ground-truth bounding boxes information. To detect scene graphs into a json file on your own images, you need to turn on the switch TEST.CUSTUM_EVAL and give a folder path that contains the custom images to TEST.CUSTUM_PATH. Only JPG files are allowed. The output will be saved as custom_prediction.json in the given DETECTED_SGG_DIR.

Test Example 1 : (SGDet, Causal TDE, MOTIFS Model, SUM Fusion) (checkpoint)

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --master_port 10027 --nproc_per_node=1 tools/relation_test_net.py --config-file "configs/e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE TDE MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs TEST.IMS_PER_BATCH 1 DTYPE "float16" GLOVE_DIR /home/kaihua/glove MODEL.PRETRAINED_DETECTOR_CKPT /home/kaihua/checkpoints/causal-motifs-sgdet OUTPUT_DIR /home/kaihua/checkpoints/causal-motifs-sgdet TEST.CUSTUM_EVAL True TEST.CUSTUM_PATH /home/kaihua/checkpoints/custom_images DETECTED_SGG_DIR /home/kaihua/checkpoints/your_output_path

Test Example 2 : (SGDet, Original, MOTIFS Model, SUM Fusion) (same checkpoint)

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --master_port 10027 --nproc_per_node=1 tools/relation_test_net.py --config-file "configs/e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs TEST.IMS_PER_BATCH 1 DTYPE "float16" GLOVE_DIR /home/kaihua/glove MODEL.PRETRAINED_DETECTOR_CKPT /home/kaihua/checkpoints/causal-motifs-sgdet OUTPUT_DIR /home/kaihua/checkpoints/causal-motifs-sgdet TEST.CUSTUM_EVAL True TEST.CUSTUM_PATH /home/kaihua/checkpoints/custom_images DETECTED_SGG_DIR /home/kaihua/checkpoints/your_output_path

The output is a json file. For each image, the scene graph information is saved as a dictionary containing bbox(sorted), bbox_labels(sorted), bbox_scores(sorted), rel_pairs(sorted), rel_labels(sorted), rel_scores(sorted), rel_all_scores(sorted), where the last rel_all_scores give all 51 predicates probability for each pair of objects. The dataset information is saved as custom_data_info.json in the same DETECTED_SGG_DIR.

Visualize Detected SGs of Custom Images

To visualize the detected scene graphs of custom images, you can follow the jupyter note: visualization/3.visualize_custom_SGDet.jpynb. The inputs of our visualization code are custom_prediction.json and custom_data_info.json in DETECTED_SGG_DIR. They will be automatically generated if you run the above custom SGDet instruction successfully. Note that there may be too much trivial bounding boxes and relationships, so you can select top-k bbox and predicates for better scene graphs by change parameters box_topk and rel_topk.

Other Options that May Improve the SGG

  • For some models (not all), turning on or turning off MODEL.ROI_RELATION_HEAD.POOLING_ALL_LEVELS will affect the performance of predicate prediction, e.g., turning it off will improve VCTree PredCls but not the corresponding SGCls and SGGen. For the reported results of VCTree, we simply turn it on for all three protocols like other models.

  • For some models (not all), a crazy fusion proposed by Learning to Count Object will significantly improves the results, which looks like f(x1, x2) = ReLU(x1 + x2) - (x1 - x2)**2. It can be used to combine the subject and object features in roi_heads/relation_head/roi_relation_predictors.py. For now, most of our model just concatenate them as torch.cat((head_rep, tail_rep), dim=-1).

  • Not to mention the hidden dimensions in the models, e.g., MODEL.ROI_RELATION_HEAD.CONTEXT_HIDDEN_DIM. Due to the limited time, we didn't fully explore all the settings in this project, I won't be surprised if you improve our results by simply changing one of our hyper-parameters

Tips and Tricks for any Unbiased TaskX from Biased Training

The counterfactual inference is not only applicable to SGG. Actually, my collegue Yulei found that counterfactual causal inference also has significant potential in unbiased VQA. We believe such an counterfactual inference can also be applied to lots of reasoning tasks with significant bias. It basically just runs the model two times (one for original output, another for the intervened output), and the later one gets the biased prior that should be subtracted from the final prediction. But there are three tips you need to bear in mind:

  • The most important things is always the causal graph. You need to find the correct causal graph with an identifiable branch that causes the biased predictions. If the causal graph is incorrect, the rest would be meaningless. Note that causal graph is not the summarization of the existing network (but the guidance to build networks), you should modify your network based on causal graph, but not vise versa.
  • For those nodes having multiple input branches in the causal graph, it's crucial to choose the right fusion function. We tested lots of fusion funtions and only found the SUM fusion and GATE fusion consistently working well. The fusion function like element-wise production won't work for TDE analysis in most of the cases, because the causal influence from multiple branches can not be linearly separated anymore, which means, it's no longer an identifiable 'influence'.
  • For those final predictions having multiple input branches in the causal graph, it may also need to add auxiliary losses for each branch to stablize the causal influence of each independent branch. Because when these branches have different convergent speeds, those hard branches would easily be learned as unimportant tiny floatings that depend on the fastest/stablest converged branch. Auxiliary losses allow different branches to have independent and equal influences.

Frequently Asked Questions:

  1. Q: Fail to load the given checkpoints. A: The model to be loaded is based on the last_checkpoint file in the OUTPUT_DIR path. If you fail to load the given pretained checkpoints, it probably because the last_checkpoint file still provides the path in my workstation rather than your own path.

  2. Q: AssertionError on "assert len(fns) == 108073" A: If you are working on VG dataset, it is probably caused by the wrong DATASETS (data path) in maskrcnn_benchmark/config/paths_catlog.py. If you are working on your custom datasets, just comment out the assertions.

  3. Q: AssertionError on "l_batch == 1" in model_motifs.py A: The original MOTIFS code only supports evaluation on 1 GPU. Since my reimplemented motifs is based on their code, I keep this assertion to make sure it won't cause any unexpected errors.

Citations

If you find this project helps your research, please kindly consider citing our project or papers in your publications.

@misc{tang2020sggcode,
title = {A Scene Graph Generation Codebase in PyTorch},
author = {Tang, Kaihua},
year = {2020},
note = {\url{https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch}},
}

@inproceedings{tang2018learning,
  title={Learning to Compose Dynamic Tree Structures for Visual Contexts},
  author={Tang, Kaihua and Zhang, Hanwang and Wu, Baoyuan and Luo, Wenhan and Liu, Wei},
  booktitle= "Conference on Computer Vision and Pattern Recognition",
  year={2019}
}

@inproceedings{tang2020unbiased,
  title={Unbiased Scene Graph Generation from Biased Training},
  author={Tang, Kaihua and Niu, Yulei and Huang, Jianqiang and Shi, Jiaxin and Zhang, Hanwang},
  booktitle= "Conference on Computer Vision and Pattern Recognition",
  year={2020}
}
Owner
Kaihua Tang
@kaihuatang.github.io/
Kaihua Tang
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
Constrained Language Models Yield Few-Shot Semantic Parsers

Constrained Language Models Yield Few-Shot Semantic Parsers This repository contains tools and instructions for reproducing the experiments in the pap

Microsoft 43 Nov 23, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
Code for our CVPR 2022 Paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection"

GEN-VLKT Code for our CVPR 2022 paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection". Contributed by Yue Lia

Yue Liao 47 Dec 04, 2022
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022