Train the HRNet model on ImageNet

Overview

High-resolution networks (HRNets) for Image classification

News

Introduction

This is the official code of high-resolution representations for ImageNet classification. We augment the HRNet with a classification head shown in the figure below. First, the four-resolution feature maps are fed into a bottleneck and the number of output channels are increased to 128, 256, 512, and 1024, respectively. Then, we downsample the high-resolution representations by a 2-strided 3x3 convolution outputting 256 channels and add them to the representations of the second-high-resolution representations. This process is repeated two times to get 1024 channels over the small resolution. Last, we transform 1024 channels to 2048 channels through a 1x1 convolution, followed by a global average pooling operation. The output 2048-dimensional representation is fed into the classifier.

ImageNet pretrained models

HRNetV2 ImageNet pretrained models are now available!

model #Params GFLOPs top-1 error top-5 error Link
HRNet-W18-C-Small-v1 13.2M 1.49 27.7% 9.3% OneDrive/BaiduYun(Access Code:v3sw)
HRNet-W18-C-Small-v2 15.6M 2.42 24.9% 7.6% OneDrive/BaiduYun(Access Code:bnc9)
HRNet-W18-C 21.3M 3.99 23.2% 6.6% OneDrive/BaiduYun(Access Code:r5xn)
HRNet-W30-C 37.7M 7.55 21.8% 5.8% OneDrive/BaiduYun(Access Code:ajc1)
HRNet-W32-C 41.2M 8.31 21.5% 5.8% OneDrive/BaiduYun(Access Code:itc1)
HRNet-W40-C 57.6M 11.8 21.1% 5.5% OneDrive/BaiduYun(Access Code:i58x)
HRNet-W44-C 67.1M 13.9 21.1% 5.6% OneDrive/BaiduYun(Access Code:3imd)
HRNet-W48-C 77.5M 16.1 20.7% 5.5% OneDrive/BaiduYun(Access Code:68g2)
HRNet-W64-C 128.1M 26.9 20.5% 5.4% OneDrive/BaiduYun(Access Code:6kw4)

Newly added checkpoints:

model #Params GFLOPs top-1 error Link
HRNet-W18-C (w/ CosineLR + CutMix + 300epochs) 21.3M 3.99 22.1% Link
HRNet-W48-C (w/ CosineLR + CutMix + 300epochs) 77.5M 16.1 18.9% Link
HRNet-W18-C-ssld (converted from PaddlePaddle) 21.3M 3.99 18.8% Link
HRNet-W48-C-ssld (converted from PaddlePaddle) 77.5M 16.1 16.4% Link

In the above Table, the first 2 checkpoints are trained with CosineLR, CutMix data augmentation and for longer epochs, i.e., 300epochs. The other two checkpoints are converted from PaddleClas. Please refer to SSLD tutorial for more details.

Quick start

Install

  1. Install PyTorch=0.4.1 following the official instructions
  2. git clone https://github.com/HRNet/HRNet-Image-Classification
  3. Install dependencies: pip install -r requirements.txt

Data preparation

You can follow the Pytorch implementation: https://github.com/pytorch/examples/tree/master/imagenet

The data should be under ./data/imagenet/images/.

Train and test

Please specify the configuration file.

For example, train the HRNet-W18 on ImageNet with a batch size of 128 on 4 GPUs:

python tools/train.py --cfg experiments/cls_hrnet_w18_sgd_lr5e-2_wd1e-4_bs32_x100.yaml

For example, test the HRNet-W18 on ImageNet on 4 GPUs:

python tools/valid.py --cfg experiments/cls_hrnet_w18_sgd_lr5e-2_wd1e-4_bs32_x100.yaml --testModel hrnetv2_w18_imagenet_pretrained.pth

Other applications of HRNet

Citation

If you find this work or code is helpful in your research, please cite:

@inproceedings{SunXLW19,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
  booktitle={CVPR},
  year={2019}
}

@article{WangSCJDZLMTWLX19,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Jingdong Wang and Ke Sun and Tianheng Cheng and 
          Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and 
          Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
  journal   = {TPAMI}
  year={2019}
}

Reference

[1] Deep High-Resolution Representation Learning for Visual Recognition. Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, Wenyu Liu, Bin Xiao. Accepted by TPAMI. download

Comments
Releases(PretrainedWeights)
Owner
HRNet
Code for pose estimation is available at https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
HRNet
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Create Data & AI apps in 20 lines of code with Shimoku

Install with: pip install shimoku-api-python Start with: from os import getenv import shimoku_api_python.client as Shimoku

Shimoku 5 Nov 07, 2022
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022
FwordCTF 2021 Infrastructure and Source code of Web/Bash challenges

FwordCTF 2021 You can find here the source code of the challenges I wrote (Web and Bash) in FwordCTF 2021 and the source code of the platform with our

Kahla 5 Nov 25, 2022
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023