Diverse Branch Block: Building a Convolution as an Inception-like Unit

Overview

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021)

DBB is a powerful ConvNet building block to replace regular conv. It improves the performance without any extra inference-time costs. This repo contains the code for building DBB and converting it into a single conv. You can also get the equivalent kernel and bias in a differentiable way at any time (get_equivalent_kernel_bias in diversebranchblock.py). This may help training-based pruning or quantization.

This is the PyTorch implementation. The MegEngine version is at https://github.com/megvii-model/DiverseBranchBlock

Paper: https://arxiv.org/abs/2103.13425

Update: released the code for building the block, transformations and verification.

Update: a more efficient implementation of BNAndPadLayer

Sometimes I call it ACNet v2 because 'DBB' is two bits larger than 'ACB' in ASCII. (lol)

We provide the trained models and a super simple PyTorch-official-example-style training script to reproduce the results.

Abstract

We propose a universal building block of Convolutional Neural Network (ConvNet) to improve the performance without any inference-time costs. The block is named Diverse Branch Block (DBB), which enhances the representational capacity of a single convolution by combining diverse branches of different scales and complexities to enrich the feature space, including sequences of convolutions, multi-scale convolutions, and average pooling. After training, a DBB can be equivalently converted into a single conv layer for deployment. Unlike the advancements of novel ConvNet architectures, DBB complicates the training-time microstructure while maintaining the macro architecture, so that it can be used as a drop-in replacement for regular conv layers of any architecture. In this way, the model can be trained to reach a higher level of performance and then transformed into the original inference-time structure for inference. DBB improves ConvNets on image classification (up to 1.9% higher top-1 accuracy on ImageNet), object detection and semantic segmentation.

image image image

Use our pretrained models

You may download the models reported in the paper from Google Drive (https://drive.google.com/drive/folders/1BPuqY_ktKz8LvHjFK5abD0qy3ESp8v6H?usp=sharing) or Baidu Cloud (https://pan.baidu.com/s/1wPaQnLKyNjF_bEMNRo4z6Q, the access code is "dbbk"). Currently only ResNet-18 models are available. The others will be released very soon. For the ease of transfer learning on other tasks, we provide both training-time and inference-time models. For ResNet-18 as an example, assume IMGNET_PATH is the path to your directory that contains the "train" and "val" directories of ImageNet, you may test the accuracy by running

python test.py IMGNET_PATH train ResNet-18_DBB_7101.pth -a ResNet-18 -t DBB

Here "train" indicates the training-time structure

Convert the training-time models into inference-time

You may convert a trained model into the inference-time structure with

python convert.py [weights file of the training-time model to load] [path to save] -a [architecture name]

For example,

python convert.py ResNet-18_DBB_7101.pth ResNet-18_DBB_7101_deploy.pth -a ResNet-18

Then you may test the inference-time model by

python test.py IMGNET_PATH deploy ResNet-18_DBB_7101_deploy.pth -a ResNet-18 -t DBB

Note that the argument "deploy" builds an inference-time model.

ImageNet training

The multi-processing training script in this repo is based on the official PyTorch example for the simplicity and better readability. The modifications include the model-building part and cosine learning rate scheduler. You may train and test like this:

python train.py -a ResNet-18 -t DBB --dist-url tcp://127.0.0.1:23333 --dist-backend nccl --multiprocessing-distributed --world-size 1 --rank 0 --workers 64 IMGNET_PATH
python test.py IMGNET_PATH train model_best.pth.tar -a ResNet-18

Use like this in your own code

Assume your model is like

class SomeModel(nn.Module):
    def __init__(self, ...):
        ...
        self.some_conv = nn.Conv2d(...)
        self.some_bn = nn.BatchNorm2d(...)
        ...
        
    def forward(self, inputs):
        out = ...
        out = self.some_bn(self.some_conv(out))
        ...

For training, just use DiverseBranchBlock to replace the conv-BN. Then SomeModel will be like

class SomeModel(nn.Module):
    def __init__(self, ...):
        ...
        self.some_dbb = DiverseBranchBlock(..., deploy=False)
        ...
        
    def forward(self, inputs):
        out = ...
        out = self.some_dbb(out)
        ...

Train the model just like you train the other regular models. Then call switch_to_deploy of every DiverseBranchBlock, test, and save.

model = SomeModel(...)
train(model)
for m in train_model.modules():
    if hasattr(m, 'switch_to_deploy'):
        m.switch_to_deploy()
test(model)
save(model)

FAQs

Q: Is the inference-time model's output the same as the training-time model?

A: Yes. You can verify that by

python dbb_verify.py

Q: What is the relationship between DBB and RepVGG?

A: RepVGG is a plain architecture, and the RepVGG-style structural re-param is designed for the plain architecture. On a non-plain architecture, a RepVGG block shows no superiority compared to a single 3x3 conv (it improves Res-50 by only 0.03%, as reported in the RepVGG paper). DBB is a universal building block that can be used on numerous architectures.

Q: How to quantize a model with DBB?

A1: Post-training quantization. After training and conversion, you may quantize the converted model with any post-training quantization method. Then you may insert a BN after the conv converted from a DBB and finetune to recover the accuracy just like you quantize and finetune the other models. This is the recommended solution.

A2: Quantization-aware training. During the quantization-aware training, instead of constraining the params in a single kernel (e.g., making every param in {-127, -126, .., 126, 127} for int8) for an ordinary conv, you should constrain the equivalent kernel of a DBB (get_equivalent_kernel_bias()).

Q: I tried to finetune your model with multiple GPUs but got an error. Why are the names of params like "xxxx.weight" in the downloaded weight file but sometimes like "module.xxxx.weight" (shown by nn.Module.named_parameters()) in my model?

A: DistributedDataParallel may prefix "module." to the name of params and cause a mismatch when loading weights by name. The simplest solution is to load the weights (model.load_state_dict(...)) before DistributedDataParallel(model). Otherwise, you may insert "module." before the names like this

checkpoint = torch.load(...)    # This is just a name-value dict
ckpt = {('module.' + k) : v for k, v in checkpoint.items()}
model.load_state_dict(ckpt)

Likewise, if the param names in the checkpoint file start with "module." but those in your model do not, you may strip the names like

ckpt = {k.replace('module.', ''):v for k,v in checkpoint.items()}   # strip the names
model.load_state_dict(ckpt)

Q: So a DBB derives the equivalent KxK kernels before each forwarding to save computations?

A: No! More precisely, we do the conversion only once right after training. Then the training-time model can be discarded, and every resultant block is just a KxK conv. We only save and use the resultant model.

Contact

[email protected]

Google Scholar Profile: https://scholar.google.com/citations?user=CIjw0KoAAAAJ&hl=en

My open-sourced papers and repos:

Simple and powerful VGG-style ConvNet architecture (preprint, 2021): RepVGG: Making VGG-style ConvNets Great Again (https://github.com/DingXiaoH/RepVGG)

State-of-the-art channel pruning (preprint, 2020): Lossless CNN Channel Pruning via Decoupling Remembering and Forgetting (https://github.com/DingXiaoH/ResRep)

CNN component (ICCV 2019): ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks (https://github.com/DingXiaoH/ACNet)

Channel pruning (CVPR 2019): Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure (https://github.com/DingXiaoH/Centripetal-SGD)

Channel pruning (ICML 2019): Approximated Oracle Filter Pruning for Destructive CNN Width Optimization (https://github.com/DingXiaoH/AOFP)

Unstructured pruning (NeurIPS 2019): Global Sparse Momentum SGD for Pruning Very Deep Neural Networks (https://github.com/DingXiaoH/GSM-SGD)

Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
πŸ… The Most Comprehensive List of Kaggle Solutions and Ideas πŸ…

πŸ… Collection of Kaggle Solutions and Ideas πŸ…

Farid Rashidi 2.3k Jan 08, 2023
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis πŸ™ˆ A more detailed re

Lincedo Lab 4 Jun 09, 2021
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. HΓ©naff,

DeepMind 56 Nov 13, 2022
Official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). VaxNeRF provides very fast training and slightl

naruya 132 Nov 21, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022