Diverse Branch Block: Building a Convolution as an Inception-like Unit

Overview

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021)

DBB is a powerful ConvNet building block to replace regular conv. It improves the performance without any extra inference-time costs. This repo contains the code for building DBB and converting it into a single conv. You can also get the equivalent kernel and bias in a differentiable way at any time (get_equivalent_kernel_bias in diversebranchblock.py). This may help training-based pruning or quantization.

This is the PyTorch implementation. The MegEngine version is at https://github.com/megvii-model/DiverseBranchBlock

Paper: https://arxiv.org/abs/2103.13425

Update: released the code for building the block, transformations and verification.

Update: a more efficient implementation of BNAndPadLayer

Sometimes I call it ACNet v2 because 'DBB' is two bits larger than 'ACB' in ASCII. (lol)

We provide the trained models and a super simple PyTorch-official-example-style training script to reproduce the results.

Abstract

We propose a universal building block of Convolutional Neural Network (ConvNet) to improve the performance without any inference-time costs. The block is named Diverse Branch Block (DBB), which enhances the representational capacity of a single convolution by combining diverse branches of different scales and complexities to enrich the feature space, including sequences of convolutions, multi-scale convolutions, and average pooling. After training, a DBB can be equivalently converted into a single conv layer for deployment. Unlike the advancements of novel ConvNet architectures, DBB complicates the training-time microstructure while maintaining the macro architecture, so that it can be used as a drop-in replacement for regular conv layers of any architecture. In this way, the model can be trained to reach a higher level of performance and then transformed into the original inference-time structure for inference. DBB improves ConvNets on image classification (up to 1.9% higher top-1 accuracy on ImageNet), object detection and semantic segmentation.

image image image

Use our pretrained models

You may download the models reported in the paper from Google Drive (https://drive.google.com/drive/folders/1BPuqY_ktKz8LvHjFK5abD0qy3ESp8v6H?usp=sharing) or Baidu Cloud (https://pan.baidu.com/s/1wPaQnLKyNjF_bEMNRo4z6Q, the access code is "dbbk"). Currently only ResNet-18 models are available. The others will be released very soon. For the ease of transfer learning on other tasks, we provide both training-time and inference-time models. For ResNet-18 as an example, assume IMGNET_PATH is the path to your directory that contains the "train" and "val" directories of ImageNet, you may test the accuracy by running

python test.py IMGNET_PATH train ResNet-18_DBB_7101.pth -a ResNet-18 -t DBB

Here "train" indicates the training-time structure

Convert the training-time models into inference-time

You may convert a trained model into the inference-time structure with

python convert.py [weights file of the training-time model to load] [path to save] -a [architecture name]

For example,

python convert.py ResNet-18_DBB_7101.pth ResNet-18_DBB_7101_deploy.pth -a ResNet-18

Then you may test the inference-time model by

python test.py IMGNET_PATH deploy ResNet-18_DBB_7101_deploy.pth -a ResNet-18 -t DBB

Note that the argument "deploy" builds an inference-time model.

ImageNet training

The multi-processing training script in this repo is based on the official PyTorch example for the simplicity and better readability. The modifications include the model-building part and cosine learning rate scheduler. You may train and test like this:

python train.py -a ResNet-18 -t DBB --dist-url tcp://127.0.0.1:23333 --dist-backend nccl --multiprocessing-distributed --world-size 1 --rank 0 --workers 64 IMGNET_PATH
python test.py IMGNET_PATH train model_best.pth.tar -a ResNet-18

Use like this in your own code

Assume your model is like

class SomeModel(nn.Module):
    def __init__(self, ...):
        ...
        self.some_conv = nn.Conv2d(...)
        self.some_bn = nn.BatchNorm2d(...)
        ...
        
    def forward(self, inputs):
        out = ...
        out = self.some_bn(self.some_conv(out))
        ...

For training, just use DiverseBranchBlock to replace the conv-BN. Then SomeModel will be like

class SomeModel(nn.Module):
    def __init__(self, ...):
        ...
        self.some_dbb = DiverseBranchBlock(..., deploy=False)
        ...
        
    def forward(self, inputs):
        out = ...
        out = self.some_dbb(out)
        ...

Train the model just like you train the other regular models. Then call switch_to_deploy of every DiverseBranchBlock, test, and save.

model = SomeModel(...)
train(model)
for m in train_model.modules():
    if hasattr(m, 'switch_to_deploy'):
        m.switch_to_deploy()
test(model)
save(model)

FAQs

Q: Is the inference-time model's output the same as the training-time model?

A: Yes. You can verify that by

python dbb_verify.py

Q: What is the relationship between DBB and RepVGG?

A: RepVGG is a plain architecture, and the RepVGG-style structural re-param is designed for the plain architecture. On a non-plain architecture, a RepVGG block shows no superiority compared to a single 3x3 conv (it improves Res-50 by only 0.03%, as reported in the RepVGG paper). DBB is a universal building block that can be used on numerous architectures.

Q: How to quantize a model with DBB?

A1: Post-training quantization. After training and conversion, you may quantize the converted model with any post-training quantization method. Then you may insert a BN after the conv converted from a DBB and finetune to recover the accuracy just like you quantize and finetune the other models. This is the recommended solution.

A2: Quantization-aware training. During the quantization-aware training, instead of constraining the params in a single kernel (e.g., making every param in {-127, -126, .., 126, 127} for int8) for an ordinary conv, you should constrain the equivalent kernel of a DBB (get_equivalent_kernel_bias()).

Q: I tried to finetune your model with multiple GPUs but got an error. Why are the names of params like "xxxx.weight" in the downloaded weight file but sometimes like "module.xxxx.weight" (shown by nn.Module.named_parameters()) in my model?

A: DistributedDataParallel may prefix "module." to the name of params and cause a mismatch when loading weights by name. The simplest solution is to load the weights (model.load_state_dict(...)) before DistributedDataParallel(model). Otherwise, you may insert "module." before the names like this

checkpoint = torch.load(...)    # This is just a name-value dict
ckpt = {('module.' + k) : v for k, v in checkpoint.items()}
model.load_state_dict(ckpt)

Likewise, if the param names in the checkpoint file start with "module." but those in your model do not, you may strip the names like

ckpt = {k.replace('module.', ''):v for k,v in checkpoint.items()}   # strip the names
model.load_state_dict(ckpt)

Q: So a DBB derives the equivalent KxK kernels before each forwarding to save computations?

A: No! More precisely, we do the conversion only once right after training. Then the training-time model can be discarded, and every resultant block is just a KxK conv. We only save and use the resultant model.

Contact

[email protected]

Google Scholar Profile: https://scholar.google.com/citations?user=CIjw0KoAAAAJ&hl=en

My open-sourced papers and repos:

Simple and powerful VGG-style ConvNet architecture (preprint, 2021): RepVGG: Making VGG-style ConvNets Great Again (https://github.com/DingXiaoH/RepVGG)

State-of-the-art channel pruning (preprint, 2020): Lossless CNN Channel Pruning via Decoupling Remembering and Forgetting (https://github.com/DingXiaoH/ResRep)

CNN component (ICCV 2019): ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks (https://github.com/DingXiaoH/ACNet)

Channel pruning (CVPR 2019): Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure (https://github.com/DingXiaoH/Centripetal-SGD)

Channel pruning (ICML 2019): Approximated Oracle Filter Pruning for Destructive CNN Width Optimization (https://github.com/DingXiaoH/AOFP)

Unstructured pruning (NeurIPS 2019): Global Sparse Momentum SGD for Pruning Very Deep Neural Networks (https://github.com/DingXiaoH/GSM-SGD)

Simple, but essential Bayesian optimization package

BayesO: A Bayesian optimization framework in Python Simple, but essential Bayesian optimization package. http://bayeso.org Online documentation Instal

Jungtaek Kim 74 Dec 05, 2022
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup)智能人机交互自然语言理解赛道第二名参赛解决方案

2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup) 智能人机交互自然语言理解赛道第二名解决方案 比赛网址: CCIR-Cup-智能人机交互自然语言理解 1.依赖环境: python==3.8 torch==1.7.1+cu110 numpy==1.19.2 transformers=

JinXiang 22 Oct 29, 2022
Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

Electronic Arts 165 Jan 03, 2023
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy

Lequan Yu 47 Nov 24, 2022
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023
RodoSol-ALPR Dataset

RodoSol-ALPR Dataset This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Ro

Rayson Laroca 45 Dec 15, 2022