Geometry-Free View Synthesis: Transformers and no 3D Priors

Overview

Geometry-Free View Synthesis: Transformers and no 3D Priors

teaser

Geometry-Free View Synthesis: Transformers and no 3D Priors
Robin Rombach*, Patrick Esser*, Björn Ommer
* equal contribution

arXiv | BibTeX | Colab

Interactive Scene Exploration Results

RealEstate10K:
realestate
Videos: short (2min) / long (12min)

ACID:
acid
Videos: short (2min) / long (9min)

Demo

For a quickstart, you can try the Colab demo, but for a smoother experience we recommend installing the local demo as described below.

Installation

The demo requires building a PyTorch extension. If you have a sane development environment with PyTorch, g++ and nvcc, you can simply

pip install git+https://github.com/CompVis/geometry-free-view-synthesis#egg=geometry-free-view-synthesis

If you run into problems and have a GPU with compute capability below 8, you can also use the provided conda environment:

git clone https://github.com/CompVis/geometry-free-view-synthesis
conda env create -f geometry-free-view-synthesis/environment.yaml
conda activate geofree
pip install geometry-free-view-synthesis/

Running

After installation, running

braindance.py

will start the demo on a sample scene. Explore the scene interactively using the WASD keys to move and arrow keys to look around. Once positioned, hit the space bar to render the novel view with GeoGPT.

You can move again with WASD keys. Mouse control can be activated with the m key. Run braindance.py to run the demo on your own images. By default, it uses the re-impl-nodepth (trained on RealEstate without explicit transformation and no depth input) which can be changed with the --model flag. The corresponding checkpoints will be downloaded the first time they are required. Specify an output path using --video path/to/vid.mp4 to record a video.

> braindance.py -h
usage: braindance.py [-h] [--model {re_impl_nodepth,re_impl_depth,ac_impl_nodepth,ac_impl_depth}] [--video [VIDEO]] [path]

What's up, BD-maniacs?

key(s)       action                  
=====================================
wasd         move around             
arrows       look around             
m            enable looking with mouse
space        render with transformer 
q            quit                    

positional arguments:
  path                  path to image or directory from which to select image. Default example is used if not specified.

optional arguments:
  -h, --help            show this help message and exit
  --model {re_impl_nodepth,re_impl_depth,ac_impl_nodepth,ac_impl_depth}
                        pretrained model to use.
  --video [VIDEO]       path to write video recording to. (no recording if unspecified).

Training

Data Preparation

We support training on RealEstate10K and ACID. Both come in the same format as described here and the preparation is the same for both of them. You will need to have colmap installed and available on your $PATH.

We assume that you have extracted the .txt files of the dataset you want to prepare into $TXT_ROOT, e.g. for RealEstate:

> tree $TXT_ROOT
├── test
│   ├── 000c3ab189999a83.txt
│   ├── ...
│   └── fff9864727c42c80.txt
└── train
    ├── 0000cc6d8b108390.txt
    ├── ...
    └── ffffe622a4de5489.txt

and that you have downloaded the frames (we downloaded them in resolution 640 x 360) into $IMG_ROOT, e.g. for RealEstate:

> tree $IMG_ROOT
├── test
│   ├── 000c3ab189999a83
│   │   ├── 45979267.png
│   │   ├── ...
│   │   └── 55255200.png
│   ├── ...
│   ├── 0017ce4c6a39d122
│   │   ├── 40874000.png
│   │   ├── ...
│   │   └── 48482000.png
├── train
│   ├── ...

To prepare the $SPLIT split of the dataset ($SPLIT being one of train, test for RealEstate and train, test, validation for ACID) in $SPA_ROOT, run the following within the scripts directory:

python sparse_from_realestate_format.py --txt_src ${TXT_ROOT}/${SPLIT} --img_src ${IMG_ROOT}/${SPLIT} --spa_dst ${SPA_ROOT}/${SPLIT}

You can also simply set TXT_ROOT, IMG_ROOT and SPA_ROOT as environment variables and run ./sparsify_realestate.sh or ./sparsify_acid.sh. Take a look into the sources to run with multiple workers in parallel.

Finally, symlink $SPA_ROOT to data/realestate_sparse/data/acid_sparse.

First Stage Models

As described in our paper, we train the transformer models in a compressed, discrete latent space of pretrained VQGANs. These pretrained models can be conveniently downloaded by running

python scripts/download_vqmodels.py 

which will also create symlinks ensuring that the paths specified in the training configs (see configs/*) exist. In case some of the models have already been downloaded, the script will only create the symlinks.

For training custom first stage models, we refer to the taming transformers repository.

Running the Training

After both the preparation of the data and the first stage models are done, the experiments on ACID and RealEstate10K as described in our paper can be reproduced by running

python geofree/main.py --base configs//_13x23_.yaml -t --gpus 0,

where is one of realestate/acid and is one of expl_img/expl_feat/expl_emb/impl_catdepth/impl_depth/impl_nodepth/hybrid. These abbreviations correspond to the experiments listed in the following Table (see also Fig.2 in the main paper)

variants

Note that each experiment was conducted on a GPU with 40 GB VRAM.

BibTeX

@misc{rombach2021geometryfree,
      title={Geometry-Free View Synthesis: Transformers and no 3D Priors}, 
      author={Robin Rombach and Patrick Esser and Björn Ommer},
      year={2021},
      eprint={2104.07652},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
CompVis Heidelberg
Computer Vision research group at the Ruprecht-Karls-University Heidelberg
CompVis Heidelberg
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023