Geometry-Free View Synthesis: Transformers and no 3D Priors

Overview

Geometry-Free View Synthesis: Transformers and no 3D Priors

teaser

Geometry-Free View Synthesis: Transformers and no 3D Priors
Robin Rombach*, Patrick Esser*, Björn Ommer
* equal contribution

arXiv | BibTeX | Colab

Interactive Scene Exploration Results

RealEstate10K:
realestate
Videos: short (2min) / long (12min)

ACID:
acid
Videos: short (2min) / long (9min)

Demo

For a quickstart, you can try the Colab demo, but for a smoother experience we recommend installing the local demo as described below.

Installation

The demo requires building a PyTorch extension. If you have a sane development environment with PyTorch, g++ and nvcc, you can simply

pip install git+https://github.com/CompVis/geometry-free-view-synthesis#egg=geometry-free-view-synthesis

If you run into problems and have a GPU with compute capability below 8, you can also use the provided conda environment:

git clone https://github.com/CompVis/geometry-free-view-synthesis
conda env create -f geometry-free-view-synthesis/environment.yaml
conda activate geofree
pip install geometry-free-view-synthesis/

Running

After installation, running

braindance.py

will start the demo on a sample scene. Explore the scene interactively using the WASD keys to move and arrow keys to look around. Once positioned, hit the space bar to render the novel view with GeoGPT.

You can move again with WASD keys. Mouse control can be activated with the m key. Run braindance.py to run the demo on your own images. By default, it uses the re-impl-nodepth (trained on RealEstate without explicit transformation and no depth input) which can be changed with the --model flag. The corresponding checkpoints will be downloaded the first time they are required. Specify an output path using --video path/to/vid.mp4 to record a video.

> braindance.py -h
usage: braindance.py [-h] [--model {re_impl_nodepth,re_impl_depth,ac_impl_nodepth,ac_impl_depth}] [--video [VIDEO]] [path]

What's up, BD-maniacs?

key(s)       action                  
=====================================
wasd         move around             
arrows       look around             
m            enable looking with mouse
space        render with transformer 
q            quit                    

positional arguments:
  path                  path to image or directory from which to select image. Default example is used if not specified.

optional arguments:
  -h, --help            show this help message and exit
  --model {re_impl_nodepth,re_impl_depth,ac_impl_nodepth,ac_impl_depth}
                        pretrained model to use.
  --video [VIDEO]       path to write video recording to. (no recording if unspecified).

Training

Data Preparation

We support training on RealEstate10K and ACID. Both come in the same format as described here and the preparation is the same for both of them. You will need to have colmap installed and available on your $PATH.

We assume that you have extracted the .txt files of the dataset you want to prepare into $TXT_ROOT, e.g. for RealEstate:

> tree $TXT_ROOT
├── test
│   ├── 000c3ab189999a83.txt
│   ├── ...
│   └── fff9864727c42c80.txt
└── train
    ├── 0000cc6d8b108390.txt
    ├── ...
    └── ffffe622a4de5489.txt

and that you have downloaded the frames (we downloaded them in resolution 640 x 360) into $IMG_ROOT, e.g. for RealEstate:

> tree $IMG_ROOT
├── test
│   ├── 000c3ab189999a83
│   │   ├── 45979267.png
│   │   ├── ...
│   │   └── 55255200.png
│   ├── ...
│   ├── 0017ce4c6a39d122
│   │   ├── 40874000.png
│   │   ├── ...
│   │   └── 48482000.png
├── train
│   ├── ...

To prepare the $SPLIT split of the dataset ($SPLIT being one of train, test for RealEstate and train, test, validation for ACID) in $SPA_ROOT, run the following within the scripts directory:

python sparse_from_realestate_format.py --txt_src ${TXT_ROOT}/${SPLIT} --img_src ${IMG_ROOT}/${SPLIT} --spa_dst ${SPA_ROOT}/${SPLIT}

You can also simply set TXT_ROOT, IMG_ROOT and SPA_ROOT as environment variables and run ./sparsify_realestate.sh or ./sparsify_acid.sh. Take a look into the sources to run with multiple workers in parallel.

Finally, symlink $SPA_ROOT to data/realestate_sparse/data/acid_sparse.

First Stage Models

As described in our paper, we train the transformer models in a compressed, discrete latent space of pretrained VQGANs. These pretrained models can be conveniently downloaded by running

python scripts/download_vqmodels.py 

which will also create symlinks ensuring that the paths specified in the training configs (see configs/*) exist. In case some of the models have already been downloaded, the script will only create the symlinks.

For training custom first stage models, we refer to the taming transformers repository.

Running the Training

After both the preparation of the data and the first stage models are done, the experiments on ACID and RealEstate10K as described in our paper can be reproduced by running

python geofree/main.py --base configs//_13x23_.yaml -t --gpus 0,

where is one of realestate/acid and is one of expl_img/expl_feat/expl_emb/impl_catdepth/impl_depth/impl_nodepth/hybrid. These abbreviations correspond to the experiments listed in the following Table (see also Fig.2 in the main paper)

variants

Note that each experiment was conducted on a GPU with 40 GB VRAM.

BibTeX

@misc{rombach2021geometryfree,
      title={Geometry-Free View Synthesis: Transformers and no 3D Priors}, 
      author={Robin Rombach and Patrick Esser and Björn Ommer},
      year={2021},
      eprint={2104.07652},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
CompVis Heidelberg
Computer Vision research group at the Ruprecht-Karls-University Heidelberg
CompVis Heidelberg
Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
Pyramid Scene Parsing Network, CVPR2017.

Pyramid Scene Parsing Network by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, details are in project page. Introduction This

Hengshuang Zhao 1.5k Jan 05, 2023
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 01, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
Chainer implementation of recent GAN variants

Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score

399 Oct 23, 2022
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
Processed, version controlled history of Minecraft's generated data and assets

mcmeta Processed, version controlled history of Minecraft's generated data and assets Repository structure Each of the following branches has a commit

Misode 75 Dec 28, 2022
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023