Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Overview

Init

Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

本项目基于

https://github.com/jaywalnut310/vits
https://github.com/SJTMusicTeam/Muskits/
https://wenet.org.cn/opencpop/ 歌声数据

使用muskit数据预处理,获得初步数据

cd egs/opencpop/svs1/
./local/data.sh

VISinger_data
--lable
--midi_dump
--wav_dump

采样率转换

python wave_16k.py
--wav_dump
--wav_dump_16k

使用muskit将数据处理成vits的格式

1, 将lable进行拆分
python muskit/data_label_single.py

label_dump,midi_dump,wav_dump:一个文件一个标注

注意:label和lable的混用(两个单词都是对的)

VISinger_data
--label_dump
--midi_dump
--wav_dump
--wav_dump_16k

2, 将label和midi处理为frame对应的发音单元和音符(基音)
python muskit/data_format_vits.py
VISinger_data
--label_vits
--label_dump
--midi_dump
--wav_dump
--wav_dump_16k

3, 生成VITS需要的files,并分割为train和dev,test不需要(可以手动设计)
python muskit/data_format_vits.py

vits_file.txt 中的内容格式:wave path|label path|pitch path;

cp vits_file.txt VISinger/filelists/
cd VISinger/

python preprocess.py 分割为train和dev

VITS训练

cd VISinger
CUDA_VISIBLE_DEVICES=0 python train.py -c configs/singing_base.json -m singing_base 2>exit_error.log;cat exit_error.log
python vsinging_infer.py

使用16K节约内存,方便模型修改

编辑midi,然后测试

cd ../;python muskit/infer_midi.py;cd -;python vsinging_edit.py

LOSS值 MEL谱

样例音频

vits_singing_样例.wav

You might also like...
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

A voice recognition assistant similar to amazon alexa, siri and google assistant.
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

An implementation of
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

this is a lite easy to use virtual keyboard project for anyone to use
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

A collection of easy-to-use, ready-to-use, interesting deep neural network models
A collection of easy-to-use, ready-to-use, interesting deep neural network models

Interesting and reproducible research works should be conserved. This repository wraps a collection of deep neural network models into a simple and un

Comments
  • couple of questions

    couple of questions

    Hello how are you ! very cool stuff you have here ,I can clearly see you love singing voice synthesis (SVS) from your forks and repos !! i wanted to ask is that a fully working Visingerr or is it a try from you to make it to sing , like can it be tested on a custom English data and have like results the same as or near the demo in the paper. Also do you have like other samples i can hear , i know that you tested it on opencpop that has almost 5.2 hours of singing data , and also in the paper they trained Visingerr for 600k iterations right ? how many iterations did you achieve on the opencpop to get the result linked below (vits_singing_样例.wav). to be honest i thought vits is data hungry like tacotron2 or fastspeech (aka needs a lot of data to get great results) , that opencpop result of your is so impressive for 5.2 hours data , i also wonder if you lowered the sample rate of opencpop from 44.1 KHz to 22KHz as i heard 44.1 KHz takes alot of time to train x10 the time needed.

    迫不及待地想知道你的消息 :)

    opened by dutchsing009 5
  • 问题

    问题

    python prepare/data_vits.py 输出 1,../VISinger_data/label_vits/XXX._label.npy|XXX_score.npy|XXX_pitch.npy|XXX_slurs.npy 2,filelists/vits_file.txt 内容格式:wave path|label path|score path|pitch path|slurs path;

    请问1 2这两步是怎么操作?

    opened by baipeng0110 3
  • 训练结果

    训练结果

    目前模型缺乏时长预测模型和基音预测模型; 训练语料中的句子修改歌词的效果;

    原歌词:雨淋湿了天空灰得更讲究

    https://user-images.githubusercontent.com/16432329/164953151-4c2513cb-f336-416b-8f04-604f13e63368.MP4

    修改歌词:你闹够了没有让我更难受

    https://user-images.githubusercontent.com/16432329/164953155-16c72670-cc89-40bc-99fe-42781c9dcdc0.MP4

    help wanted 
    opened by MaxMax2016 0
  • About release models and VISinger

    About release models and VISinger

    Hi

    This is a fantastic project that I have ever seen.

    Could you please share the released model? As on the inference step, it is said that "using the released model"

    Also, is there any plan to implement the VISinger model?

    Thank you!

    opened by shiyanpei0826 1
Owner
AmorTX
Speech
AmorTX
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022
Learning to trade under the reinforcement learning framework

Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework

Uirá Caiado 470 Nov 28, 2022
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes

Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i

1 Dec 15, 2021
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

118 Dec 26, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. Nausėdas 6 Aug 30, 2022
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022