InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

Overview

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

Python 3.7 pytorch 1.1.0 TensorFlow 1.12.2 sklearn 0.21.2

image Figure: High-quality facial attributes editing results with InterFaceGAN.

In this repository, we propose an approach, termed as InterFaceGAN, for semantic face editing. Specifically, InterFaceGAN is capable of turning an unconditionally trained face synthesis model to controllable GAN by interpreting the very first latent space and finding the hidden semantic subspaces.

[Paper (CVPR)] [Paper (TPAMI)] [Project Page] [Demo] [Colab]

How to Use

Pick up a model, pick up a boundary, pick up a latent code, and then EDIT!

# Before running the following code, please first download
# the pre-trained ProgressiveGAN model on CelebA-HQ dataset,
# and then place it under the folder ".models/pretrain/".
LATENT_CODE_NUM=10
python edit.py \
    -m pggan_celebahq \
    -b boundaries/pggan_celebahq_smile_boundary.npy \
    -n "$LATENT_CODE_NUM" \
    -o results/pggan_celebahq_smile_editing

GAN Models Used (Prior Work)

Before going into details, we would like to first introduce the two state-of-the-art GAN models used in this work, which are ProgressiveGAN (Karras el al., ICLR 2018) and StyleGAN (Karras et al., CVPR 2019). These two models achieve high-quality face synthesis by learning unconditional GANs. For more details about these two models, please refer to the original papers, as well as the official implementations.

ProgressiveGAN: [Paper] [Code]

StyleGAN: [Paper] [Code]

Code Instruction

Generative Models

A GAN-based generative model basically maps the latent codes (commonly sampled from high-dimensional latent space, such as standart normal distribution) to photo-realistic images. Accordingly, a base class for generator, called BaseGenerator, is defined in models/base_generator.py. Basically, it should contains following member functions:

  • build(): Build a pytorch module.
  • load(): Load pre-trained weights.
  • convert_tf_model() (Optional): Convert pre-trained weights from tensorflow model.
  • sample(): Randomly sample latent codes. This function should specify what kind of distribution the latent code is subject to.
  • preprocess(): Function to preprocess the latent codes before feeding it into the generator.
  • synthesize(): Run the model to get synthesized results (or any other intermediate outputs).
  • postprocess(): Function to postprocess the outputs from generator to convert them to images.

We have already provided following models in this repository:

  • ProgressiveGAN:
    • A clone of official tensorflow implementation: models/pggan_tf_official/. This clone is only used for converting tensorflow pre-trained weights to pytorch ones. This conversion will be done automitally when the model is used for the first time. After that, tensorflow version is not used anymore.
    • Pytorch implementation of official model (just for inference): models/pggan_generator_model.py.
    • Generator class derived from BaseGenerator: models/pggan_generator.py.
    • Please download the official released model trained on CelebA-HQ dataset and place it in folder models/pretrain/.
  • StyleGAN:
    • A clone of official tensorflow implementation: models/stylegan_tf_official/. This clone is only used for converting tensorflow pre-trained weights to pytorch ones. This conversion will be done automitally when the model is used for the first time. After that, tensorflow version is not used anymore.
    • Pytorch implementation of official model (just for inference): models/stylegan_generator_model.py.
    • Generator class derived from BaseGenerator: models/stylegan_generator.py.
    • Please download the official released models trained on CelebA-HQ dataset and FF-HQ dataset and place them in folder models/pretrain/.
    • Support synthesizing images from $\mathcal{Z}$ space, $\mathcal{W}$ space, and extended $\mathcal{W}$ space (18x512).
    • Set truncation trick and noise randomization trick in models/model_settings.py. Among them, STYLEGAN_RANDOMIZE_NOISE is highly recommended to set as False. STYLEGAN_TRUNCATION_PSI = 0.7 and STYLEGAN_TRUNCATION_LAYERS = 8 are inherited from official implementation. Users can customize their own models. NOTE: These three settings will NOT affect the pre-trained weights.
  • Customized model:
    • Users can do experiments with their own models by easily deriving new class from BaseGenerator.
    • Before used, new model should be first registered in MODEL_POOL in file models/model_settings.py.

Utility Functions

We provide following utility functions in utils/manipulator.py to make InterFaceGAN much easier to use.

  • train_boundary(): This function can be used for boundary searching. It takes pre-prepared latent codes and the corresponding attributes scores as inputs, and then outputs the normal direction of the separation boundary. Basically, this goal is achieved by training a linear SVM. The returned vector can be further used for semantic face editing.
  • project_boundary(): This function can be used for conditional manipulation. It takes a primal direction and other conditional directions as inputs, and then outputs a new normalized direction. Moving latent code along this new direction will manipulate the primal attribute yet barely affect the conditioned attributes. NOTE: For now, at most two conditions are supported.
  • linear_interpolate(): This function can be used for semantic face editing. It takes a latent code and the normal direction of a particular semantic boundary as inputs, and then outputs a collection of manipulated latent codes with linear interpolation. These interpolation can be used to see how the synthesis will vary if moving the latent code along the given direction.

Tools

  • generate_data.py: This script can be used for data preparation. It will generate a collection of syntheses (images are saved for further attribute prediction) as well as save the input latent codes.

  • train_boundary.py: This script can be used for boundary searching.

  • edit.py: This script can be usd for semantic face editing.

Usage

We take ProgressiveGAN model trained on CelebA-HQ dataset as an instance.

Prepare data

NUM=10000
python generate_data.py -m pggan_celebahq -o data/pggan_celebahq -n "$NUM"

Predict Attribute Score

Get your own predictor for attribute $ATTRIBUTE_NAME, evaluate on all generated images, and save the inference results as data/pggan_celebahq/"$ATTRIBUTE_NAME"_scores.npy. NOTE: The save results should be with shape ($NUM, 1).

Search Semantic Boundary

python train_boundary.py \
    -o boundaries/pggan_celebahq_"$ATTRIBUTE_NAME" \
    -c data/pggan_celebahq/z.npy \
    -s data/pggan_celebahq/"$ATTRIBUTE_NAME"_scores.npy

Compute Conditional Boundary (Optional)

This step is optional. It depends on whether conditional manipulation is needed. Users can use function project_boundary() in file utils/manipulator.py to compute the projected direction.

Boundaries Description

We provided following boundaries in folder boundaries/. The boundaries can be more accurate if stronger attribute predictor is used.

  • ProgressiveGAN model trained on CelebA-HQ dataset:

    • Single boundary:
      • pggan_celebahq_pose_boundary.npy: Pose.
      • pggan_celebahq_smile_boundary.npy: Smile (expression).
      • pggan_celebahq_age_boundary.npy: Age.
      • pggan_celebahq_gender_boundary.npy: Gender.
      • pggan_celebahq_eyeglasses_boundary.npy: Eyeglasses.
      • pggan_celebahq_quality_boundary.npy: Image quality.
    • Conditional boundary:
      • pggan_celebahq_age_c_gender_boundary.npy: Age (conditioned on gender).
      • pggan_celebahq_age_c_eyeglasses_boundary.npy: Age (conditioned on eyeglasses).
      • pggan_celebahq_age_c_gender_eyeglasses_boundary.npy: Age (conditioned on gender and eyeglasses).
      • pggan_celebahq_gender_c_age_boundary.npy: Gender (conditioned on age).
      • pggan_celebahq_gender_c_eyeglasses_boundary.npy: Gender (conditioned on eyeglasses).
      • pggan_celebahq_gender_c_age_eyeglasses_boundary.npy: Gender (conditioned on age and eyeglasses).
      • pggan_celebahq_eyeglasses_c_age_boundary.npy: Eyeglasses (conditioned on age).
      • pggan_celebahq_eyeglasses_c_gender_boundary.npy: Eyeglasses (conditioned on gender).
      • pggan_celebahq_eyeglasses_c_age_gender_boundary.npy: Eyeglasses (conditioned on age and gender).
  • StyleGAN model trained on CelebA-HQ dataset:

    • Single boundary in $\mathcal{Z}$ space:
      • stylegan_celebahq_pose_boundary.npy: Pose.
      • stylegan_celebahq_smile_boundary.npy: Smile (expression).
      • stylegan_celebahq_age_boundary.npy: Age.
      • stylegan_celebahq_gender_boundary.npy: Gender.
      • stylegan_celebahq_eyeglasses_boundary.npy: Eyeglasses.
    • Single boundary in $\mathcal{W}$ space:
      • stylegan_celebahq_pose_w_boundary.npy: Pose.
      • stylegan_celebahq_smile_w_boundary.npy: Smile (expression).
      • stylegan_celebahq_age_w_boundary.npy: Age.
      • stylegan_celebahq_gender_w_boundary.npy: Gender.
      • stylegan_celebahq_eyeglasses_w_boundary.npy: Eyeglasses.
  • StyleGAN model trained on FF-HQ dataset:

    • Single boundary in $\mathcal{Z}$ space:
      • stylegan_ffhq_pose_boundary.npy: Pose.
      • stylegan_ffhq_smile_boundary.npy: Smile (expression).
      • stylegan_ffhq_age_boundary.npy: Age.
      • stylegan_ffhq_gender_boundary.npy: Gender.
      • stylegan_ffhq_eyeglasses_boundary.npy: Eyeglasses.
    • Conditional boundary in $\mathcal{Z}$ space:
      • stylegan_ffhq_age_c_gender_boundary.npy: Age (conditioned on gender).
      • stylegan_ffhq_age_c_eyeglasses_boundary.npy: Age (conditioned on eyeglasses).
      • stylegan_ffhq_eyeglasses_c_age_boundary.npy: Eyeglasses (conditioned on age).
      • stylegan_ffhq_eyeglasses_c_gender_boundary.npy: Eyeglasses (conditioned on gender).
    • Single boundary in $\mathcal{W}$ space:
      • stylegan_ffhq_pose_w_boundary.npy: Pose.
      • stylegan_ffhq_smile_w_boundary.npy: Smile (expression).
      • stylegan_ffhq_age_w_boundary.npy: Age.
      • stylegan_ffhq_gender_w_boundary.npy: Gender.
      • stylegan_ffhq_eyeglasses_w_boundary.npy: Eyeglasses.

BibTeX

@inproceedings{shen2020interpreting,
  title     = {Interpreting the Latent Space of GANs for Semantic Face Editing},
  author    = {Shen, Yujun and Gu, Jinjin and Tang, Xiaoou and Zhou, Bolei},
  booktitle = {CVPR},
  year      = {2020}
}
@article{shen2020interfacegan,
  title   = {InterFaceGAN: Interpreting the Disentangled Face Representation Learned by GANs},
  author  = {Shen, Yujun and Yang, Ceyuan and Tang, Xiaoou and Zhou, Bolei},
  journal = {TPAMI},
  year    = {2020}
}
Owner
GenForce: May Generative Force Be with You
Research on Generative Modeling in Zhou Group
GenForce: May Generative Force Be with You
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023