InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

Overview

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

Python 3.7 pytorch 1.1.0 TensorFlow 1.12.2 sklearn 0.21.2

image Figure: High-quality facial attributes editing results with InterFaceGAN.

In this repository, we propose an approach, termed as InterFaceGAN, for semantic face editing. Specifically, InterFaceGAN is capable of turning an unconditionally trained face synthesis model to controllable GAN by interpreting the very first latent space and finding the hidden semantic subspaces.

[Paper (CVPR)] [Paper (TPAMI)] [Project Page] [Demo] [Colab]

How to Use

Pick up a model, pick up a boundary, pick up a latent code, and then EDIT!

# Before running the following code, please first download
# the pre-trained ProgressiveGAN model on CelebA-HQ dataset,
# and then place it under the folder ".models/pretrain/".
LATENT_CODE_NUM=10
python edit.py \
    -m pggan_celebahq \
    -b boundaries/pggan_celebahq_smile_boundary.npy \
    -n "$LATENT_CODE_NUM" \
    -o results/pggan_celebahq_smile_editing

GAN Models Used (Prior Work)

Before going into details, we would like to first introduce the two state-of-the-art GAN models used in this work, which are ProgressiveGAN (Karras el al., ICLR 2018) and StyleGAN (Karras et al., CVPR 2019). These two models achieve high-quality face synthesis by learning unconditional GANs. For more details about these two models, please refer to the original papers, as well as the official implementations.

ProgressiveGAN: [Paper] [Code]

StyleGAN: [Paper] [Code]

Code Instruction

Generative Models

A GAN-based generative model basically maps the latent codes (commonly sampled from high-dimensional latent space, such as standart normal distribution) to photo-realistic images. Accordingly, a base class for generator, called BaseGenerator, is defined in models/base_generator.py. Basically, it should contains following member functions:

  • build(): Build a pytorch module.
  • load(): Load pre-trained weights.
  • convert_tf_model() (Optional): Convert pre-trained weights from tensorflow model.
  • sample(): Randomly sample latent codes. This function should specify what kind of distribution the latent code is subject to.
  • preprocess(): Function to preprocess the latent codes before feeding it into the generator.
  • synthesize(): Run the model to get synthesized results (or any other intermediate outputs).
  • postprocess(): Function to postprocess the outputs from generator to convert them to images.

We have already provided following models in this repository:

  • ProgressiveGAN:
    • A clone of official tensorflow implementation: models/pggan_tf_official/. This clone is only used for converting tensorflow pre-trained weights to pytorch ones. This conversion will be done automitally when the model is used for the first time. After that, tensorflow version is not used anymore.
    • Pytorch implementation of official model (just for inference): models/pggan_generator_model.py.
    • Generator class derived from BaseGenerator: models/pggan_generator.py.
    • Please download the official released model trained on CelebA-HQ dataset and place it in folder models/pretrain/.
  • StyleGAN:
    • A clone of official tensorflow implementation: models/stylegan_tf_official/. This clone is only used for converting tensorflow pre-trained weights to pytorch ones. This conversion will be done automitally when the model is used for the first time. After that, tensorflow version is not used anymore.
    • Pytorch implementation of official model (just for inference): models/stylegan_generator_model.py.
    • Generator class derived from BaseGenerator: models/stylegan_generator.py.
    • Please download the official released models trained on CelebA-HQ dataset and FF-HQ dataset and place them in folder models/pretrain/.
    • Support synthesizing images from $\mathcal{Z}$ space, $\mathcal{W}$ space, and extended $\mathcal{W}$ space (18x512).
    • Set truncation trick and noise randomization trick in models/model_settings.py. Among them, STYLEGAN_RANDOMIZE_NOISE is highly recommended to set as False. STYLEGAN_TRUNCATION_PSI = 0.7 and STYLEGAN_TRUNCATION_LAYERS = 8 are inherited from official implementation. Users can customize their own models. NOTE: These three settings will NOT affect the pre-trained weights.
  • Customized model:
    • Users can do experiments with their own models by easily deriving new class from BaseGenerator.
    • Before used, new model should be first registered in MODEL_POOL in file models/model_settings.py.

Utility Functions

We provide following utility functions in utils/manipulator.py to make InterFaceGAN much easier to use.

  • train_boundary(): This function can be used for boundary searching. It takes pre-prepared latent codes and the corresponding attributes scores as inputs, and then outputs the normal direction of the separation boundary. Basically, this goal is achieved by training a linear SVM. The returned vector can be further used for semantic face editing.
  • project_boundary(): This function can be used for conditional manipulation. It takes a primal direction and other conditional directions as inputs, and then outputs a new normalized direction. Moving latent code along this new direction will manipulate the primal attribute yet barely affect the conditioned attributes. NOTE: For now, at most two conditions are supported.
  • linear_interpolate(): This function can be used for semantic face editing. It takes a latent code and the normal direction of a particular semantic boundary as inputs, and then outputs a collection of manipulated latent codes with linear interpolation. These interpolation can be used to see how the synthesis will vary if moving the latent code along the given direction.

Tools

  • generate_data.py: This script can be used for data preparation. It will generate a collection of syntheses (images are saved for further attribute prediction) as well as save the input latent codes.

  • train_boundary.py: This script can be used for boundary searching.

  • edit.py: This script can be usd for semantic face editing.

Usage

We take ProgressiveGAN model trained on CelebA-HQ dataset as an instance.

Prepare data

NUM=10000
python generate_data.py -m pggan_celebahq -o data/pggan_celebahq -n "$NUM"

Predict Attribute Score

Get your own predictor for attribute $ATTRIBUTE_NAME, evaluate on all generated images, and save the inference results as data/pggan_celebahq/"$ATTRIBUTE_NAME"_scores.npy. NOTE: The save results should be with shape ($NUM, 1).

Search Semantic Boundary

python train_boundary.py \
    -o boundaries/pggan_celebahq_"$ATTRIBUTE_NAME" \
    -c data/pggan_celebahq/z.npy \
    -s data/pggan_celebahq/"$ATTRIBUTE_NAME"_scores.npy

Compute Conditional Boundary (Optional)

This step is optional. It depends on whether conditional manipulation is needed. Users can use function project_boundary() in file utils/manipulator.py to compute the projected direction.

Boundaries Description

We provided following boundaries in folder boundaries/. The boundaries can be more accurate if stronger attribute predictor is used.

  • ProgressiveGAN model trained on CelebA-HQ dataset:

    • Single boundary:
      • pggan_celebahq_pose_boundary.npy: Pose.
      • pggan_celebahq_smile_boundary.npy: Smile (expression).
      • pggan_celebahq_age_boundary.npy: Age.
      • pggan_celebahq_gender_boundary.npy: Gender.
      • pggan_celebahq_eyeglasses_boundary.npy: Eyeglasses.
      • pggan_celebahq_quality_boundary.npy: Image quality.
    • Conditional boundary:
      • pggan_celebahq_age_c_gender_boundary.npy: Age (conditioned on gender).
      • pggan_celebahq_age_c_eyeglasses_boundary.npy: Age (conditioned on eyeglasses).
      • pggan_celebahq_age_c_gender_eyeglasses_boundary.npy: Age (conditioned on gender and eyeglasses).
      • pggan_celebahq_gender_c_age_boundary.npy: Gender (conditioned on age).
      • pggan_celebahq_gender_c_eyeglasses_boundary.npy: Gender (conditioned on eyeglasses).
      • pggan_celebahq_gender_c_age_eyeglasses_boundary.npy: Gender (conditioned on age and eyeglasses).
      • pggan_celebahq_eyeglasses_c_age_boundary.npy: Eyeglasses (conditioned on age).
      • pggan_celebahq_eyeglasses_c_gender_boundary.npy: Eyeglasses (conditioned on gender).
      • pggan_celebahq_eyeglasses_c_age_gender_boundary.npy: Eyeglasses (conditioned on age and gender).
  • StyleGAN model trained on CelebA-HQ dataset:

    • Single boundary in $\mathcal{Z}$ space:
      • stylegan_celebahq_pose_boundary.npy: Pose.
      • stylegan_celebahq_smile_boundary.npy: Smile (expression).
      • stylegan_celebahq_age_boundary.npy: Age.
      • stylegan_celebahq_gender_boundary.npy: Gender.
      • stylegan_celebahq_eyeglasses_boundary.npy: Eyeglasses.
    • Single boundary in $\mathcal{W}$ space:
      • stylegan_celebahq_pose_w_boundary.npy: Pose.
      • stylegan_celebahq_smile_w_boundary.npy: Smile (expression).
      • stylegan_celebahq_age_w_boundary.npy: Age.
      • stylegan_celebahq_gender_w_boundary.npy: Gender.
      • stylegan_celebahq_eyeglasses_w_boundary.npy: Eyeglasses.
  • StyleGAN model trained on FF-HQ dataset:

    • Single boundary in $\mathcal{Z}$ space:
      • stylegan_ffhq_pose_boundary.npy: Pose.
      • stylegan_ffhq_smile_boundary.npy: Smile (expression).
      • stylegan_ffhq_age_boundary.npy: Age.
      • stylegan_ffhq_gender_boundary.npy: Gender.
      • stylegan_ffhq_eyeglasses_boundary.npy: Eyeglasses.
    • Conditional boundary in $\mathcal{Z}$ space:
      • stylegan_ffhq_age_c_gender_boundary.npy: Age (conditioned on gender).
      • stylegan_ffhq_age_c_eyeglasses_boundary.npy: Age (conditioned on eyeglasses).
      • stylegan_ffhq_eyeglasses_c_age_boundary.npy: Eyeglasses (conditioned on age).
      • stylegan_ffhq_eyeglasses_c_gender_boundary.npy: Eyeglasses (conditioned on gender).
    • Single boundary in $\mathcal{W}$ space:
      • stylegan_ffhq_pose_w_boundary.npy: Pose.
      • stylegan_ffhq_smile_w_boundary.npy: Smile (expression).
      • stylegan_ffhq_age_w_boundary.npy: Age.
      • stylegan_ffhq_gender_w_boundary.npy: Gender.
      • stylegan_ffhq_eyeglasses_w_boundary.npy: Eyeglasses.

BibTeX

@inproceedings{shen2020interpreting,
  title     = {Interpreting the Latent Space of GANs for Semantic Face Editing},
  author    = {Shen, Yujun and Gu, Jinjin and Tang, Xiaoou and Zhou, Bolei},
  booktitle = {CVPR},
  year      = {2020}
}
@article{shen2020interfacegan,
  title   = {InterFaceGAN: Interpreting the Disentangled Face Representation Learned by GANs},
  author  = {Shen, Yujun and Yang, Ceyuan and Tang, Xiaoou and Zhou, Bolei},
  journal = {TPAMI},
  year    = {2020}
}
Owner
GenForce: May Generative Force Be with You
Research on Generative Modeling in Zhou Group
GenForce: May Generative Force Be with You
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

The official code for the paper "Inverse Problems Leveraging Pre-trained Contrastive Representations" (to appear in NeurIPS 2021).

Sriram Ravula 26 Dec 10, 2022
Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos

HRNet 167 Dec 27, 2022
DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.

dm_control: DeepMind Infrastructure for Physics-Based Simulation. DeepMind's software stack for physics-based simulation and Reinforcement Learning en

DeepMind 3k Dec 31, 2022
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023
Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

LOREN Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification". DEMO System Check out o

Jiangjie Chen 37 Dec 27, 2022
Hierarchical User Intent Graph Network for Multimedia Recommendation

Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph

6 Jan 05, 2023
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
The Face Mask recognition system uses AI technology to detect the person with or without a mask.

Face Mask Detection Face Mask Detection system built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Rohan Kasabe 4 Apr 05, 2022
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022