Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

Overview

LOREN

Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

front

DEMO System

Check out our demo system! Note that the results will be slightly different from the paper, since we use an up-to-date Wikipedia as the evidence source whereas FEVER uses Wikipedia dated 2017.

Dependencies

  • CUDA > 11
  • Prepare requirements: pip3 install -r requirements.txt.
    • Also works for allennlp==2.3.0, transformers==4.5.1, torch==1.8.1.
  • Set environment variable $PJ_HOME: export PJ_HOME=/YOUR_PATH/LOREN/.

Download Pre-processed Data and Checkpoints

  • Pre-processed data at Google Drive. Unzip it and put them under LOREN/data/.

    • Data for training a Seq2Seq MRC is at data/mrc_seq2seq_v5/.
    • Data for training veracity prediction is at data/fact_checking/v5/*.json.
      • Note: dev.json uses ground truth evidence for validation, where eval.json uses predicted evidence for validation. This is consistent with the settings in KGAT.
    • Evidence retrieval models are not required for training LOREN, since we directly adopt the retrieved evidence from KGAT, which is at data/fever/baked_data/ (using only during pre-processing).
    • Original data is at data/fever/ (using only during pre-processing).
  • Pre-trained checkpoints at Huggingface Models. Unzip it and put them under LOREN/models/.

    • Checkpoints for veracity prediciton are at models/fact_checking/.
    • Checkpoint for generative MRC is at models/mrc_seq2seq/.
    • Checkpoints for KGAT evidence retrieval models are at models/evidence_retrieval/ (not used in training, displayed only for the sake of completeness).

Training LOREN from Scratch

For quick training and inference with pre-processed data & pre-trained models, please go to Veracity Prediction.

First, go to LOREN/src/.

1 Building Local Premises from Scratch

1) Extract claim phrases and generate questions

You'll need to download three external models in this step, i.e., two models from AllenNLP in parsing_client/sentence_parser.py and a T5-based question generation model in qg_client/question_generator.py. Don't worry, they'll be automatically downloaded.

  • Run python3 pproc_client/pproc_questions.py --roles eval train val test
  • This generates cached json files:
    • AG_PREFIX/answer.{role}.cache: extracted phrases are stored in the field answers.
    • QG_PREFIX/question.{role}.cache: generated questions are stored in the field cloze_qs, generate_qs and questions (two types of questions concatenated).

2) Train Seq2Seq MRC

Prepare self-supervised MRC data (only for SUPPORTED claims)
  • Run python3 pproc_client/pproc_mrc.py -o LOREN/data/mrc_seq2seq_v5.
  • This generates files for Seq2Seq training in a HuggingFace style:
    • data/mrc_seq2seq_v5/{role}.source: concatenated question and evidence text.
    • data/mrc_seq2seq_v5/{role}.target: answer (claim phrase).
Training Seq2Seq
  • Go to mrc_client/seq2seq/, which is modified based on HuggingFace's examples.
  • Follow script/train.sh.
  • The best checkpoint will be saved in $output_dir (e.g., models/mrc_seq2seq/).
    • Best checkpoints are decided by ROUGE score on dev set.

3) Run MRC for all questions and assemble local premises

  • Run python3 pproc_client/pproc_evidential.py --roles val train eval test -m PATH_TO_MRC_MODEL/.
  • This generates files:
    • {role}.json: files for veracity prediction. Assembled local premises are stored in the field evidential_assembled.

4) Building NLI prior

Before training veracity prediction, we'll need a NLI prior from pre-trained NLI models, such as DeBERTa.

  • Run python3 pproc_client/pproc_nli_labels.py -i PATH_TO/{role}.json -m microsoft/deberta-large-mnli.
  • Mind the order! The predicted classes [Contradict, Neutral, Entailment] correspond to [REF, NEI, SUP], respectively.
  • This generates files:
    • Adding a new field nli_labels to {role}.json.

2 Veracity Prediction

This part is rather easy (less pipelined :P). A good place to start if you want to skip the above pre-processing.

1) Training

  • Go to folder check_client/.
  • See what scripts/train_*.sh does.

2) Testing

  • Stay in folder check_client/
  • Run python3 fact_checker.py --params PARAMS_IN_THE_CODE
  • This generates files:
    • results/*.predictions.jsonl

3) Evaluation

  • Go to folder eval_client/

  • For Label Accuracy and FEVER score: fever_scorer.py

  • For CulpA (turn on --verbose in testing): culpa.py

Citation

If you find our paper or resources useful to your research, please kindly cite our paper (pre-print, official published paper coming soon).

@misc{chen2021loren,
      title={LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification}, 
      author={Jiangjie Chen and Qiaoben Bao and Changzhi Sun and Xinbo Zhang and Jiaze Chen and Hao Zhou and Yanghua Xiao and Lei Li},
      year={2021},
      eprint={2012.13577},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
Jiangjie Chen
Ph.D. student.
Jiangjie Chen
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles

Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace

Patrick.St. 18 Sep 26, 2022
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022