SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Overview

Project 1: Standardized Test Analysis by Adam Klesc

Overview

This project covers:

  • Basic statistics and probability
  • Many Python programming concepts
  • Programmatically interacting with files and directories
  • Visualizations
  • EDA
  • Working with Jupyter notebooks for development and reporting

The SAT is a standardized test that many colleges and universities in the United States require for their admissions process. This score is used along with other materials such as grade point average (GPA) and essay responses to determine whether or not a potential student will be accepted to the university.

The SAT has two sections of the test: Evidence-Based Reading and Writing and Math (source).

The SAT changed their format in 2016 to address some problems that students and schools had with their style of questions and questionable grading. The ACT surpassed the SAT in popularity due to these problems and a perception that the SAT was "class-biased" due to their questions. The ACT also did this through a lot of states make it free state-wide and a requirement to pass high school which the SAT did not catch up on.


Problem Statement

When crafting my problem statement, I really was stuck with what to really analyze and what problem to solve. But it really simplified the process for me when looking at the yearly datasets because looking at the years and the progression of both the SAT and ACT participation rates, it really clicked.

My problem statement in a short sentence is:

Has collegeboard solved the problems they were seeking to fix with the 2016 format change?

I really had to go through three factors when making my problem statement. Who is my audience, what data am I using, and what value am I bringing to my audience.

  • The first factor was fairly easy to answer, I think the people who would be most interested in the answer to my problem statement would be collegeboard and the people involved in the change to see whether their change has actually worked.

  • The second factor was what data I would use and primarily I would be using the SAT 2017-2019 data along with the ACT 2017-2019 data but over the course of the project, I added some outside sources as well.

  • The final factor in creating that problem statement was bringing clarity to the changes and whether they have been actually productive in solving what they were mean't to solve.


Datasets

Provided Data

These are the datasets I used in the process that were included in the data folder provided, I cleaned each of them but will still be sharing both the raw and cleaned datasets

Additional Data

These are the datasets I required from outside research I performed.


Data Dictionary

A dictionary compiling the primary columns from the two main datasets used throughout the analysis.

Feature Type Dataset Description
participation17 float SATTotal Participation numbers for the 2017 SAT(in decimal percentage)
participation17 float ACTTotal Participation numbers for the 2017 ACT(in decimal percentage)
participation18 float ACTTotal Participation numbers for the 2018 ACT(in decimal percentage)
participation18 float SATTotal Participation numbers for the 2018 SAT(in decimal percentage)
participation19 float SATTotal Participation numbers for the 2019 SAT(in decimal percentage)
participation19 *float( ACTTotal Participation numbers for the 2019 ACT(in decimal percentage)
total17 int SATTotal Average total score for the 2017 SAT(median score)
total18 int SATTotal Average total score for the 2018 SAT(median score)
total19 int SATTotal Average total score for the 2019 SAT(median score)
composite17 float ACTTotal Average total score for the 2017 ACT(mean score)
composite18 float ACTTotal Average total score for the 2018 ACT(mean score)
composite19 float ACTTotal Average total score for the 2019 ACT(mean score)
sat_free boolean ACTTotal/SATTotal States that have the SAT free statewide
act_free boolean ACTTotal/SATTotal States that have the ACT free statewide
population_rank float ACTTotal/SATTotal Population rank for each state
gdp_rank_19 float/int ACTTotal/SATTotal GDP rank for each state
state object SATTotal The states where the data is located
state object ACTTotal The states where the data is located

Deliverables

Notebook that contains my cleaning of data and creation of new CSV's

cleaning_and_creating.ipynb

Notebook that contains my analysis and visualization

visualization_and_analysis.ipynb

Starter Code

starter-code.ipynb

ReadMe

README-ADAMK.md

Presentation

project_1_presentation.pdf


Technical Report Starter Code

Edited structure of starter code notebook by creating individual notesbooks for cleaning and analysis + visualization. Starter code trials are complete either in those two notebooks or on the starter code itself

Notebook that contains my cleaning of data and creation of new CSV's

cleaning_and_creating.ipynb

Notebook that contains my analysis and visualization

visualization_and_analysis.ipynb

Starter Code

starter-code.ipynb


Analysis

The analysis started with understanding the problem statement, in order to do that, I had to find out the reasons why the SAT changed and look at those problems in isolation each when looking at the data to see if collegeboard has actually succeeded in solving the problems they tried to address with their change.

  • Increase participation to overtake the ACT in market-share

  • Eliminate the stigma that the SAT is class-biased and is unfair towards those of lower incomes

I narrowed it down to these two problems because of these two sources

greentestprep

cnn.com

These sources really helped clarify what the SAT was actually looking to achieve with their change and helped me in my data collection process

  • From looking at the mean and median, it was evident that the SAT was steadily gaining popularity while the ACT was losing popularity but what makes the change a great success in terms of the first problem the change was mean't to address was how the SAT was significantly more popular than the ACT in states with a higher population. The SAT has also notably been made free in 3 states after 2017 (the first full year of the SAT change), those states being Colorado, West Virginia, and Illinois. New Hampshire, Michigan, and Connecticut also made a switch to the SAT, the year of the change. It's clear that the SAT change has done wonders in improving participation and making states believers in their test.

  • This lines up with outside sources claiming that the SAT surpassed the ACT in 2019 with overall market share with 2.2 million students to the ACT's 1.8.

  • From looking at the correlation between the GDP per state + SAT Participation, it was clear to see that the change had not had the effect that was desired from collegeboard execs. The coefficient stayed the same despite the added help in a new Khan Academy course that was free to all + fee waivers (for college applications) for those who met a certain income threshold. source

  • While a lot of studies tend to disagree on the fact that the SAT is a class-biased test, it is clear that a lot of universities are taking note of the potentially inherent class disadvantage in standardized testing as a whole and have outright banned it not only for just times of a pandemic, but also for the foreseeable future. The most prominent of these universities being the University of California


In Conclusion

From my analysis, I was able to conclude that the SAT has successfully managed to overtake the ACT once again as the market leader in standardized testing due to primarily to the SAT changes made to the format and structure. It not only made the test more appealing to students but also states themselves as number of them made it free during the time between 2019 from the date of the change. This is evidenced by the fact that the SAT once again, became the market-leader in standardized testing after the ACT's regression post-SAT change. While solving participation was a massive success in both participation numbers and time, the second problem is where the SAT still needs work.

The SAT change partially occurred due to the reputation that the SAT was a class-biased test, the strange scoring of the 2400 scale and detachment from the actual school work that students were learning in school lead to the ACT being more popular and while they did fix the problem with participation, the lingering problem of class-bias is still there. With more colleges pulling away from standardized testing and geographical location being so heavily tied to participation and success, there need to be more upcoming changes to rectify this issue and make the SAT a more equitable test.

Owner
Adam Muhammad Klesc
Hopeful data scientist. Currently in General Assembly and taking their data science immersive course!
Adam Muhammad Klesc
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023