SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Overview

Project 1: Standardized Test Analysis by Adam Klesc

Overview

This project covers:

  • Basic statistics and probability
  • Many Python programming concepts
  • Programmatically interacting with files and directories
  • Visualizations
  • EDA
  • Working with Jupyter notebooks for development and reporting

The SAT is a standardized test that many colleges and universities in the United States require for their admissions process. This score is used along with other materials such as grade point average (GPA) and essay responses to determine whether or not a potential student will be accepted to the university.

The SAT has two sections of the test: Evidence-Based Reading and Writing and Math (source).

The SAT changed their format in 2016 to address some problems that students and schools had with their style of questions and questionable grading. The ACT surpassed the SAT in popularity due to these problems and a perception that the SAT was "class-biased" due to their questions. The ACT also did this through a lot of states make it free state-wide and a requirement to pass high school which the SAT did not catch up on.


Problem Statement

When crafting my problem statement, I really was stuck with what to really analyze and what problem to solve. But it really simplified the process for me when looking at the yearly datasets because looking at the years and the progression of both the SAT and ACT participation rates, it really clicked.

My problem statement in a short sentence is:

Has collegeboard solved the problems they were seeking to fix with the 2016 format change?

I really had to go through three factors when making my problem statement. Who is my audience, what data am I using, and what value am I bringing to my audience.

  • The first factor was fairly easy to answer, I think the people who would be most interested in the answer to my problem statement would be collegeboard and the people involved in the change to see whether their change has actually worked.

  • The second factor was what data I would use and primarily I would be using the SAT 2017-2019 data along with the ACT 2017-2019 data but over the course of the project, I added some outside sources as well.

  • The final factor in creating that problem statement was bringing clarity to the changes and whether they have been actually productive in solving what they were mean't to solve.


Datasets

Provided Data

These are the datasets I used in the process that were included in the data folder provided, I cleaned each of them but will still be sharing both the raw and cleaned datasets

Additional Data

These are the datasets I required from outside research I performed.


Data Dictionary

A dictionary compiling the primary columns from the two main datasets used throughout the analysis.

Feature Type Dataset Description
participation17 float SATTotal Participation numbers for the 2017 SAT(in decimal percentage)
participation17 float ACTTotal Participation numbers for the 2017 ACT(in decimal percentage)
participation18 float ACTTotal Participation numbers for the 2018 ACT(in decimal percentage)
participation18 float SATTotal Participation numbers for the 2018 SAT(in decimal percentage)
participation19 float SATTotal Participation numbers for the 2019 SAT(in decimal percentage)
participation19 *float( ACTTotal Participation numbers for the 2019 ACT(in decimal percentage)
total17 int SATTotal Average total score for the 2017 SAT(median score)
total18 int SATTotal Average total score for the 2018 SAT(median score)
total19 int SATTotal Average total score for the 2019 SAT(median score)
composite17 float ACTTotal Average total score for the 2017 ACT(mean score)
composite18 float ACTTotal Average total score for the 2018 ACT(mean score)
composite19 float ACTTotal Average total score for the 2019 ACT(mean score)
sat_free boolean ACTTotal/SATTotal States that have the SAT free statewide
act_free boolean ACTTotal/SATTotal States that have the ACT free statewide
population_rank float ACTTotal/SATTotal Population rank for each state
gdp_rank_19 float/int ACTTotal/SATTotal GDP rank for each state
state object SATTotal The states where the data is located
state object ACTTotal The states where the data is located

Deliverables

Notebook that contains my cleaning of data and creation of new CSV's

cleaning_and_creating.ipynb

Notebook that contains my analysis and visualization

visualization_and_analysis.ipynb

Starter Code

starter-code.ipynb

ReadMe

README-ADAMK.md

Presentation

project_1_presentation.pdf


Technical Report Starter Code

Edited structure of starter code notebook by creating individual notesbooks for cleaning and analysis + visualization. Starter code trials are complete either in those two notebooks or on the starter code itself

Notebook that contains my cleaning of data and creation of new CSV's

cleaning_and_creating.ipynb

Notebook that contains my analysis and visualization

visualization_and_analysis.ipynb

Starter Code

starter-code.ipynb


Analysis

The analysis started with understanding the problem statement, in order to do that, I had to find out the reasons why the SAT changed and look at those problems in isolation each when looking at the data to see if collegeboard has actually succeeded in solving the problems they tried to address with their change.

  • Increase participation to overtake the ACT in market-share

  • Eliminate the stigma that the SAT is class-biased and is unfair towards those of lower incomes

I narrowed it down to these two problems because of these two sources

greentestprep

cnn.com

These sources really helped clarify what the SAT was actually looking to achieve with their change and helped me in my data collection process

  • From looking at the mean and median, it was evident that the SAT was steadily gaining popularity while the ACT was losing popularity but what makes the change a great success in terms of the first problem the change was mean't to address was how the SAT was significantly more popular than the ACT in states with a higher population. The SAT has also notably been made free in 3 states after 2017 (the first full year of the SAT change), those states being Colorado, West Virginia, and Illinois. New Hampshire, Michigan, and Connecticut also made a switch to the SAT, the year of the change. It's clear that the SAT change has done wonders in improving participation and making states believers in their test.

  • This lines up with outside sources claiming that the SAT surpassed the ACT in 2019 with overall market share with 2.2 million students to the ACT's 1.8.

  • From looking at the correlation between the GDP per state + SAT Participation, it was clear to see that the change had not had the effect that was desired from collegeboard execs. The coefficient stayed the same despite the added help in a new Khan Academy course that was free to all + fee waivers (for college applications) for those who met a certain income threshold. source

  • While a lot of studies tend to disagree on the fact that the SAT is a class-biased test, it is clear that a lot of universities are taking note of the potentially inherent class disadvantage in standardized testing as a whole and have outright banned it not only for just times of a pandemic, but also for the foreseeable future. The most prominent of these universities being the University of California


In Conclusion

From my analysis, I was able to conclude that the SAT has successfully managed to overtake the ACT once again as the market leader in standardized testing due to primarily to the SAT changes made to the format and structure. It not only made the test more appealing to students but also states themselves as number of them made it free during the time between 2019 from the date of the change. This is evidenced by the fact that the SAT once again, became the market-leader in standardized testing after the ACT's regression post-SAT change. While solving participation was a massive success in both participation numbers and time, the second problem is where the SAT still needs work.

The SAT change partially occurred due to the reputation that the SAT was a class-biased test, the strange scoring of the 2400 scale and detachment from the actual school work that students were learning in school lead to the ACT being more popular and while they did fix the problem with participation, the lingering problem of class-bias is still there. With more colleges pulling away from standardized testing and geographical location being so heavily tied to participation and success, there need to be more upcoming changes to rectify this issue and make the SAT a more equitable test.

Owner
Adam Muhammad Klesc
Hopeful data scientist. Currently in General Assembly and taking their data science immersive course!
Adam Muhammad Klesc
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022
Godot RL Agents is a fully Open Source packages that allows video game creators

Godot RL Agents The Godot RL Agents is a fully Open Source packages that allows video game creators, AI researchers and hobbiest the opportunity to le

Edward Beeching 326 Dec 30, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022
Implementing a simplified copy of Shazam application from scratch using MinHashing and LSH.

Building Shazam from scratch In this repository we tried to implement a simplified copy of the Shazam application able to tell you the name of a song

Arturo Ghinassi 0 Nov 17, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022