graph-theoretic framework for robust pairwise data association

Overview

banner

CLIPPER: A Graph-Theoretic Framework for Robust Data Association

Data association is a fundamental problem in robotics and autonomy. CLIPPER provides a framework for robust, pairwise data association and is applicable in a wide variety of problems (e.g., point cloud registration, sensor calibration, place recognition, etc.). By leveraging the notion of geometric consistency, a graph is formed and the data association problem is reduced to the maximum clique problem. This NP-hard problem has been studied in many fields, including data association, and solutions techniques are either exact (and not scalable) or approximate (and potentially imprecise). CLIPPER relaxes this problem in a way that (1) allows guarantees to be made on the solution of the problem and (2) is applicable to weighted graphs, avoiding the loss of information due to binarization which is common in other data association work. These features allow CLIPPER to achieve high performance, even in the presence of extreme outliers.

This repo provides both MATLAB and C++ implementations of the CLIPPER framework. In addition, Python bindings, Python, C++, and MATLAB examples are included.

Citation

If you find this code useful in your research, please cite our paper:

  • P.C. Lusk, K. Fathian, and J.P. How, "CLIPPER: A Graph-Theoretic Framework for Robust Data Association," arXiv preprint arXiv:2011.10202, 2020. (pdf) (presentation)
@inproceedings{lusk2020clipper,
  title={CLIPPER: A Graph-Theoretic Framework for Robust Data Association},
  author={Lusk, Parker C and Fathian, Kaveh and How, Jonathan P},
  booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
  year={2021}
}

Getting Started

After cloning this repo, please build using cmake:

$ mkdir build
$ cd build
$ cmake ..
$ make

Once successful, the C++ tests can be run with ./test/tests (if -DBUILD_TESTS=ON is added to cmake .. command).

Python Bindings

If Python bindings are built (see configuration options below), then the clipper Python module will need to be installed before using. This can be done with

$ cd build
$ make pip-install

# or directly using pip (e.g., to control which python version)
$ python3 -m pip install build/bindings/python # 'python3 -m' ensures appropriate pip version is used

Note: if using Python2 (e.g., < ROS Noetic), you must tell pybind11 to use Python2.7. Do this with adding the flag -DPYBIND11_PYTHON_VERSION=2.7 to the cmake .. command. You may have to remove your build directory and start over to ensure nothing is cached. You should see that pybind11 finds a Python2.7 interpreter and libraries.

A Python example notebook can be found in examples.

MATLAB Bindings

If MATLAB is installed on your computer and MATLAB bindings are requested (see configuration options below), then cmake will attempt to find your MATLAB installation and subsequently generate a set of MEX files so that CLIPPER can be used in MATLAB.

Note that in addition to the C++/MEX version of CLIPPER's dense cluster finder, we provide a reference MATLAB version of our projected gradient ascent approach to finding dense clusters.

Please find MATLAB examples here.

Configuring the Build

The following cmake options are available when building CLIPPER:

Option Description Default
BUILD_BINDINGS_PYTHON Uses pybind11 to create Python bindings for CLIPPER ON
BUILD_BINDINGS_MATLAB Attempts to build MEX files which are required for the MATLAB examples. A MATLAB installation is required. Gracefully fails if not found. ON
BUILD_TESTS Builds C++ tests OFF
ENABLE_MKL Attempts to use Intel MKL (if installed) with Eigen for accelerated linear algebra. OFF
ENABLE_BLAS Attempts to use a BLAS with Eigen for accelerated linear algebra. OFF

Note: The options ENABLE_MKL and ENABLE_BLAS are mutually exclusive.

These cmake options can be set using the syntax cmake -DENABLE_MKL=ON .. or using the ccmake . command (both from the build dir).

Performance with MKL vs BLAS

On Intel CPUs, MKL should be preferred as it offers superior performance over other general BLAS packages. Also note that on Ubuntu, OpenBLAS (sudo apt install libopenblas-dev) provides better performance than the default installed blas.

With MKL, we have found an almost 2x improvement in runtime over the MATLAB implementation. On an i9, the C++/MKL implementation can solve problems with 1000 associations in 70 ms.

Note: Currently, MATLAB bindings do not work if either BLAS or MKL are enabled. Python bindings do not work if MKL is enabled.

Including in Another C++ Project

A simple way to include clipper as a shared library in another C++ project is via cmake. This method will automatically clone and build clipper, making the resulting library accessible in your main project. In the project CMakeLists.txt you can add

set(CLIPPER_DIR "${CMAKE_CURRENT_BINARY_DIR}/clipper-download" CACHE INTERNAL "CLIPPER build dir" FORCE)
set(BUILD_BINDINGS_MATLAB OFF CACHE BOOL "")
set(BUILD_TESTS OFF CACHE BOOL "")
set(ENABLE_MKL OFF CACHE BOOL "")
set(ENABLE_BLAS OFF CACHE BOOL "")
configure_file(cmake/clipper.cmake.in ${CLIPPER_DIR}/CMakeLists.txt IMMEDIATE @ONLY)
execute_process(COMMAND "${CMAKE_COMMAND}" -G "${CMAKE_GENERATOR}" . WORKING_DIRECTORY ${CLIPPER_DIR})
execute_process(COMMAND "${CMAKE_COMMAND}" --build . WORKING_DIRECTORY ${CLIPPER_DIR})
add_subdirectory(${CLIPPER_DIR}/src ${CLIPPER_DIR}/build)

where cmake/clipper.cmake.in looks like

cmake_minimum_required(VERSION 3.10)
project(clipper-download NONE)

include(ExternalProject)
ExternalProject_Add(clipper
    GIT_REPOSITORY      "https://github.com/mit-acl/clipper"
    GIT_TAG             master
    SOURCE_DIR          "${CMAKE_CURRENT_BINARY_DIR}/src"
    BINARY_DIR          "${CMAKE_CURRENT_BINARY_DIR}/build"
    CONFIGURE_COMMAND   ""
    BUILD_COMMAND       ""
    INSTALL_COMMAND     ""
    TEST_COMMAND        ""
)

Then, you can link your project with clipper using the syntax target_link_libraries(yourproject clipper).


This research is supported by Ford Motor Company.

Owner
MIT Aerospace Controls Laboratory
see more code at https://gitlab.com/mit-acl
MIT Aerospace Controls Laboratory
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
PyTorch implementation of Pointnet2/Pointnet++

Pointnet2/Pointnet++ PyTorch Project Status: Unmaintained. Due to finite time, I have no plans to update this code and I will not be responding to iss

Erik Wijmans 1.2k Dec 29, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
RaceBERT -- A transformer based model to predict race and ethnicty from names

RaceBERT -- A transformer based model to predict race and ethnicty from names Installation pip install racebert Using a virtual environment is highly

Prasanna Parasurama 3 Nov 02, 2022
This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effects in Video."

Omnimatte in PyTorch This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effect

Erika Lu 728 Dec 28, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
Source code for Fixed-Point GAN for Cloud Detection

FCD: Fixed-Point GAN for Cloud Detection PyTorch source code of Nyborg & Assent (2020). Abstract The detection of clouds in satellite images is an ess

Joachim Nyborg 8 Dec 22, 2022
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

202 Nov 18, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023