Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

Overview

MobileViT

RegNet

Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TRANSFORMER.


Table of Contents


Model Architecture

Trulli

MobileViT Architecture

Usage

Training

python main.py
optional arguments:
  -h, --help            show this help message and exit
  --gpu_device GPU_DEVICE
                        Select specific GPU to run the model
  --batch-size N        Input batch size for training (default: 64)
  --epochs N            Number of epochs to train (default: 20)
  --num-class N         Number of classes to classify (default: 10)
  --lr LR               Learning rate (default: 0.01)
  --weight-decay WD     Weight decay (default: 1e-5)
  --model-path PATH     Path to save the model

Citation

@InProceedings{Sachin2021,
  title = {MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TRANSFORMER},
  author = {Sachin Mehta and Mohammad Rastegari},
  booktitle = {},
  year = {2021}
}

If this implement have any problem please let me know, thank you.

Comments
  • Training settings

    Training settings

    I really appreciate your efforts in implementing this model in pytorch. Here, I have one concern about the training settings. If what I understand is correct, you just trained the model for less than 5 epoches.

    In addition, the hyper-parameters you adopted is different from that in the original article. For instance, in the original manuscript, authors train mobilevit using AdamW optimizer, label smoothing cross-entry and multi-scale sampler. The training phase has a warmup stage.

    I also found that the classificaion accuracy provided here is much lower than that in the original version.

    I conjecture that the gab between accuracies are caused by different training settings.

    opened by hkzhang91 6
  • load pretrain weight failed

    load pretrain weight failed

    import torch
    import models
    
    model = models.MobileViT_S()
    PATH = "./MobileVit-S.pth.tar"
    weights = torch.load(PATH, map_location=lambda storage, loc: storage)
    model.load_state_dict(weights['state_dict'])
    model.eval()
    torch.save(model, './model.pt')
    
    • I try to load the pre-train weight to test one demo; but the network structure does not seem to match the weights, is there any solution?

    image

    opened by hererookie 2
  • model training hyperparameter

    model training hyperparameter

    A problem has been bothering me. the learning rate, optimizer, batch_size, L2 regularization, label smoothing and epochs are inconsistent with the paper. How should I modify the code?

    opened by Agino-ltp 1
  • Have you test MobileVit on cifar-10?

    Have you test MobileVit on cifar-10?

    Thanks for your wonderful work!

    I prepare to try MobileVit on small dataset, such as MNIST, and I need adjust the network structure. Before this work, I want to know if MobileVit has a better performance than other networks on small dataset.

    I notice "get_cifar10_dataset" in utils.py. Have you tested MobileVit on cifar-10? If you have, could you please show me the accuracy and inference time result?

    opened by Jerryme-xxm 1
  • Issues when loading MobileViT_S()

    Issues when loading MobileViT_S()

    I wanted to load the MobileViT_S() model and use the pre-trained weights, but I have got some errors in my code. To make it easier and help others, I will share my solution (in case there will be someone who is beginner like me):

    def load_mobilevit_weights(model_path):
      # Create an instance of the MobileViT model
      net = MobileViT_S()
      
      # Load the PyTorch state_dict
      state_dict = torch.load(model_path, map_location=torch.device('cpu'))['state_dict']
      
      # Since there is a problem in the names of layers, we will change the keys to meet the MobileViT model architecture
      for key in list(state_dict.keys()):
        state_dict[key.replace('module.', '')] = state_dict.pop(key)
      
      # Once the keys are fixed, we can modify the parameters of MobileViT
      net.load_state_dict(state_dict)
      
      return net
    
    net = load_mobilevit_weights("MobileViT_S_model_best.pth.tar")
    
    opened by Sehaba95 4
Releases(weight)
Owner
Hong-Jia Chen
Master student at National Chung Cheng University, Taiwan. Interested in Deep Learning and Computer Vision.
Hong-Jia Chen
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
Code and models used in "MUSS Multilingual Unsupervised Sentence Simplification by Mining Paraphrases".

Multilingual Unsupervised Sentence Simplification Code and pretrained models to reproduce experiments in "MUSS: Multilingual Unsupervised Sentence Sim

Facebook Research 81 Dec 29, 2022
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
Romanian Automatic Speech Recognition from the ROBIN project

RobinASR This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, tog

RACAI 10 Jan 01, 2023
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
PyMatting: A Python Library for Alpha Matting

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting 1.4k Dec 30, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022