The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

Related tags

Deep LearningD-REX
Overview

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

How do I cite D-REX?

For now, cite the Arxiv paper

@article{albalak2021drex,
      title={D-REX: Dialogue Relation Extraction with Explanations}, 
      author={Alon Albalak and Varun Embar and Yi-Lin Tuan and Lise Getoor and William Yang Wang},
      journal={arXiv preprint arXiv:2109.05126},
      year={2021},
}

To train the full system:

GPU=0
bash train_drex_system.sh $GPU

Notes:

  • The training script is set up to work with an NVIDIA Titan RTX (24Gb memory, mixed-precision)
  • To train on a GPU with less memory, adjust the GPU_BATCH_SIZE parameter in train_drex_system.sh to match your memory limit.
  • Training the full system takes ~24 hours on a single NVIDIA Titan RTX

To test the trained system:

GPU=0
bash test_drex_system.sh $GPU

To train/test individual modules:

  • Relation Extraction Model -
    • Training:
      GPU=0
      MODEL_PATH=relation_extraction_model
      mkdir $MODEL_PATH
      CUDA_VISIBLE_DEVICES=$GPU python3 train_relation_extraction_model.py \
          --model_class=relation_extraction_roberta \
          --model_name_or_path=roberta-base \
          --base_model=roberta-base \
          --effective_batch_size=30 \
          --gpu_batch_size=30 \
          --fp16 \
          --output_dir=$MODEL_PATH \
          --relation_extraction_pretraining \
          > $MODEL_PATH/train_outputs.log
    • Testing:
      GPU=0
      MODEL_PATH=relation_extraction_model
      BEST_MODEL=$(ls $MODEL_PATH/F1* -d | sort -r | head -n 1)
      THRESHOLD1=$(echo $BEST_MODEL | grep -o "T1.....")
      THRESHOLD1=${THRESHOLD1: -2}
      THRESHOLD2=$(echo $BEST_MODEL | grep -o "T2.....")
      THRESHOLD2=${THRESHOLD2: -2}
      CUDA_VISIBLE_DEVICES=0 python3 test_relation_extraction_model.py \
          --model_class=relation_extraction_roberta \
          --model_name_or_path=$BEST_MODEL \
          --base_model=roberta-base \
          --relation_extraction_pretraining \
          --threshold1=$THRESHOLD1 \
          --threshold2=$THRESHOLD2 \
          --data_split=test
  • Explanation Extraction Model -
    • Training:
      GPU=0
      MODEL_PATH=explanation_extraction_model
      mkdir $MODEL_PATH
      CUDA_VISIBLE_DEVICES=$GPU python3 train_explanation_policy.py \
          --model_class=explanation_policy_roberta \
          --model_name_or_path=roberta-base \
          --base_model=roberta-base \
          --effective_batch_size=30 \
          --gpu_batch_size=30 \
          --fp16 \
          --output_dir=$MODEL_PATH \
          --explanation_policy_pretraining \
          > $MODEL_PATH/train_outputs.log    
    • Testing:
      GPU=0
      MODEL_PATH=explanation_extraction_model
      BEST_MODEL=$(ls $MODEL_PATH/F1* -d | sort -r | head -n 1)
      CUDA_VISIBLE_DEVICES=$GPU python3 test_explanation_policy.py \
          --model_class=explanation_policy_roberta \
          --model_name_or_path=$BEST_MODEL \
          --base_model=roberta-base \
          --explanation_policy_pretraining \
          --data_split=test
Owner
Alon Albalak
Alon Albalak
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
Repository for tackling Kaggle Ultrasound Nerve Segmentation challenge using Torchnet.

Ultrasound Nerve Segmentation Challenge using Torchnet This repository acts as a starting point for someone who wants to start with the kaggle ultraso

Qure.ai 46 Jul 18, 2022
PyTorch implementation for ACL 2021 paper "Maria: A Visual Experience Powered Conversational Agent".

Maria: A Visual Experience Powered Conversational Agent This repository is the Pytorch implementation of our paper "Maria: A Visual Experience Powered

Jokie 22 Dec 12, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022