The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

Related tags

Deep LearningD-REX
Overview

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

How do I cite D-REX?

For now, cite the Arxiv paper

@article{albalak2021drex,
      title={D-REX: Dialogue Relation Extraction with Explanations}, 
      author={Alon Albalak and Varun Embar and Yi-Lin Tuan and Lise Getoor and William Yang Wang},
      journal={arXiv preprint arXiv:2109.05126},
      year={2021},
}

To train the full system:

GPU=0
bash train_drex_system.sh $GPU

Notes:

  • The training script is set up to work with an NVIDIA Titan RTX (24Gb memory, mixed-precision)
  • To train on a GPU with less memory, adjust the GPU_BATCH_SIZE parameter in train_drex_system.sh to match your memory limit.
  • Training the full system takes ~24 hours on a single NVIDIA Titan RTX

To test the trained system:

GPU=0
bash test_drex_system.sh $GPU

To train/test individual modules:

  • Relation Extraction Model -
    • Training:
      GPU=0
      MODEL_PATH=relation_extraction_model
      mkdir $MODEL_PATH
      CUDA_VISIBLE_DEVICES=$GPU python3 train_relation_extraction_model.py \
          --model_class=relation_extraction_roberta \
          --model_name_or_path=roberta-base \
          --base_model=roberta-base \
          --effective_batch_size=30 \
          --gpu_batch_size=30 \
          --fp16 \
          --output_dir=$MODEL_PATH \
          --relation_extraction_pretraining \
          > $MODEL_PATH/train_outputs.log
    • Testing:
      GPU=0
      MODEL_PATH=relation_extraction_model
      BEST_MODEL=$(ls $MODEL_PATH/F1* -d | sort -r | head -n 1)
      THRESHOLD1=$(echo $BEST_MODEL | grep -o "T1.....")
      THRESHOLD1=${THRESHOLD1: -2}
      THRESHOLD2=$(echo $BEST_MODEL | grep -o "T2.....")
      THRESHOLD2=${THRESHOLD2: -2}
      CUDA_VISIBLE_DEVICES=0 python3 test_relation_extraction_model.py \
          --model_class=relation_extraction_roberta \
          --model_name_or_path=$BEST_MODEL \
          --base_model=roberta-base \
          --relation_extraction_pretraining \
          --threshold1=$THRESHOLD1 \
          --threshold2=$THRESHOLD2 \
          --data_split=test
  • Explanation Extraction Model -
    • Training:
      GPU=0
      MODEL_PATH=explanation_extraction_model
      mkdir $MODEL_PATH
      CUDA_VISIBLE_DEVICES=$GPU python3 train_explanation_policy.py \
          --model_class=explanation_policy_roberta \
          --model_name_or_path=roberta-base \
          --base_model=roberta-base \
          --effective_batch_size=30 \
          --gpu_batch_size=30 \
          --fp16 \
          --output_dir=$MODEL_PATH \
          --explanation_policy_pretraining \
          > $MODEL_PATH/train_outputs.log    
    • Testing:
      GPU=0
      MODEL_PATH=explanation_extraction_model
      BEST_MODEL=$(ls $MODEL_PATH/F1* -d | sort -r | head -n 1)
      CUDA_VISIBLE_DEVICES=$GPU python3 test_explanation_policy.py \
          --model_class=explanation_policy_roberta \
          --model_name_or_path=$BEST_MODEL \
          --base_model=roberta-base \
          --explanation_policy_pretraining \
          --data_split=test
Owner
Alon Albalak
Alon Albalak
make ASCII Art by Deep Learning

DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,

OsciiArt 1.4k Dec 28, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
Pytorch implementation of

EfficientTTS Unofficial Pytorch implementation of "EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture"(arXiv). Disclaimer: Somebo

Liu Songxiang 109 Nov 16, 2022
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
A torch implementation of "Pixel-Level Domain Transfer"

Pixel Level Domain Transfer A torch implementation of "Pixel-Level Domain Transfer". based on dcgan.torch. Dataset The dataset used is "LookBook", fro

Fei Xia 260 Sep 02, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
Streamlit tool to explore coco datasets

What is this This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results and calculate impo

Jakub Cieslik 75 Dec 16, 2022
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
A bare-bones Python library for quality diversity optimization.

pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op

ICAROS 127 Jan 06, 2023
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021