Joint deep network for feature line detection and description

Related tags

Deep LearningSOLD2
Overview

SOLD² - Self-supervised Occlusion-aware Line Description and Detection

This repository contains the implementation of the paper: SOLD² : Self-supervised Occlusion-aware Line Description and Detection, J-T. Lin*, R. Pautrat*, V. Larsson, M. Oswald and M. Pollefeys (Oral at CVPR 2021).

SOLD² is a deep line segment detector and descriptor that can be trained without hand-labelled line segments and that can robustly match lines even in the presence of occlusion.

Demos

Matching in the presence of occlusion: demo_occlusion

Matching with a moving camera: demo_moving_camera

Usage

Installation

We recommend using this code in a Python environment (e.g. venv or conda). The following script installs the necessary requirements with pip:

pip install -r requirements.txt

Set your dataset and experiment paths (where you will store your datasets and checkpoints of your experiments) by modifying the file config/project_config.py. Both variables DATASET_ROOT and EXP_PATH have to be set.

You can download the version of the Wireframe dataset that we used during our training and testing here. This repository also includes some files to train on the Holicity dataset to add more outdoor images, but note that we did not extensively test this dataset and the original paper was based on the Wireframe dataset only.

Training your own model

All training parameters are located in configuration files in the folder config. Training SOLD² from scratch requires several steps, some of which taking several days, depending on the size of your dataset.

Step 1: Train on a synthetic dataset

The following command will create the synthetic dataset and start training the model on it:

python experiment.py --mode train --dataset_config config/synthetic_dataset.yaml --model_config config/train_detector.yaml --exp_name sold2_synth
Step 2: Export the raw pseudo ground truth on the Wireframe dataset with homography adaptation

Note that this step can take one to several days depending on your machine and on the size of the dataset. You can set the batch size to the maximum capacity that your GPU can handle.

python experiment.py --exp_name wireframe_train --mode export --resume_path <path to your previously trained sold2_synth> --model_config config/train_detector.yaml --dataset_config config/wireframe_dataset.yaml --checkpoint_name <name of the best checkpoint> --export_dataset_mode train --export_batch_size 4

You can similarly perform the same for the test set:

python experiment.py --exp_name wireframe_test --mode export --resume_path <path to your previously trained sold2_synth> --model_config config/train_detector.yaml --dataset_config config/wireframe_dataset.yaml --checkpoint_name <name of the best checkpoint> --export_dataset_mode test --export_batch_size 4
Step3: Compute the ground truth line segments from the raw data
cd postprocess
python convert_homography_results.py <name of the previously exported file (e.g. "wireframe_train.h5")> <name of the new data with extracted line segments (e.g. "wireframe_train_gt.h5")> ../config/export_line_features.yaml
cd ..

We recommend testing the results on a few samples of your dataset to check the quality of the output, and modifying the hyperparameters if need be. Using a detect_thresh=0.5 and inlier_thresh=0.99 proved to be successful for the Wireframe dataset in our case for example.

Step 4: Train the detector on the Wireframe dataset

We found it easier to pretrain the detector alone first, before fine-tuning it with the descriptor part. Uncomment the lines 'gt_source_train' and 'gt_source_test' in config/wireframe_dataset.yaml and fill them with the path to the h5 file generated in the previous step.

python experiment.py --mode train --dataset_config config/wireframe_dataset.yaml --model_config config/train_detector.yaml --exp_name sold2_wireframe

Alternatively, you can also fine-tune the already trained synthetic model:

python experiment.py --mode train --dataset_config config/wireframe_dataset.yaml --model_config config/train_detector.yaml --exp_name sold2_wireframe --pretrained --pretrained_path <path ot the pre-trained sold2_synth> --checkpoint_name <name of the best checkpoint>

Lastly, you can resume a training that was stopped:

python experiment.py --mode train --dataset_config config/wireframe_dataset.yaml --model_config config/train_detector.yaml --exp_name sold2_wireframe --resume --resume_path <path to the  model to resume> --checkpoint_name <name of the last checkpoint>
Step 5: Train the full pipeline on the Wireframe dataset

You first need to modify the field 'return_type' in config/wireframe_dataset.yaml to 'paired_desc'. The following command will then train the full model (detector + descriptor) on the Wireframe dataset:

python experiment.py --mode train --dataset_config config/wireframe_dataset.yaml --model_config config/train_full_pipeline.yaml --exp_name sold2_full_wireframe --pretrained --pretrained_path <path ot the pre-trained sold2_wireframe> --checkpoint_name <name of the best checkpoint>

Pretrained models

We provide the checkpoints of two pretrained models:

How to use it

We provide a notebook showing how to use the trained model of SOLD². Additionally, you can use the model to export line features (segments and descriptor maps) as follows:

python export_line_features.py --img_list <list to a txt file containing the path to all the images> --output_folder <path to the output folder> --checkpoint_path <path to your best checkpoint,>

You can tune some of the line detection parameters in config/export_line_features.yaml, in particular the 'detect_thresh' and 'inlier_thresh' to adapt them to your trained model and type of images.

Results

Comparison of repeatability and localization error to the state of the art on the Wireframe dataset for an error threshold of 5 pixels in structural and orthogonal distances:

Structural distance Orthogonal distance
Rep-5 Loc-5 Rep-5 Loc-5
LCNN 0.434 2.589 0.570 1.725
HAWP 0.451 2.625 0.537 1.725
DeepHough 0.419 2.576 0.618 1.720
TP-LSD TP512 0.563 2.467 0.746 1.450
LSD 0.358 2.079 0.707 0.825
Ours with NMS 0.557 1.995 0.801 1.119
Ours 0.616 2.019 0.914 0.816

Matching precision-recall curves on the Wireframe and ETH3D datasets: pred_lines_pr_curve

Bibtex

If you use this code in your project, please consider citing the following paper:

@InProceedings{Pautrat_Lin_2021_CVPR,
    author = {Pautrat, Rémi* and Juan-Ting, Lin* and Larsson, Viktor and Oswald, Martin R. and Pollefeys, Marc},
    title = {SOLD²: Self-supervised Occlusion-aware Line Description and Detection},
    booktitle = {Computer Vision and Pattern Recognition (CVPR)},
    year = {2021},
}
Owner
Computer Vision and Geometry Lab
Computer Vision and Geometry Lab
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
Pixel-level Crack Detection From Images Of Levee Systems : A Comparative Study

PIXEL-LEVEL CRACK DETECTION FROM IMAGES OF LEVEE SYSTEMS : A COMPARATIVE STUDY G

Manisha Panta 2 Jul 23, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks

FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks This is our implementation for the paper: FinGAT: A Financial Graph At

Yu-Che Tsai 64 Dec 13, 2022
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
Implementation of Ag-Grid component for Streamlit

streamlit-aggrid AgGrid is an awsome grid for web frontend. More information in https://www.ag-grid.com/. Consider purchasing a license from Ag-Grid i

Pablo Fonseca 556 Dec 31, 2022
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022