Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Overview

Is it Time to Replace CNNs with Transformers for Medical Images?

Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Convolutional Neural Networks (CNNs) have reigned for a decade as the de facto approach to automated medical image diagnosis. Recently, vision transformers (ViTs) have appeared as a competitive alternative to CNNs, yielding similar levels of performance while possessing several interesting properties that could prove beneficial for medical imaging tasks. In this work, we explore whether it is time to move to transformer-based models or if we should keep working with CNNs - can we trivially switch to transformers? If so, what are the advantages and drawbacks of switching to ViTs for medical image diagnosis? We consider these questions in a series of experiments on three mainstream medical image datasets. Our findings show that, while CNNs perform better when trained from scratch, off-the-shelf vision transformers using default hyperparameters are on par with CNNs when pretrained on ImageNet, and outperform their CNN counterparts when pretrained using self-supervision.

Enviroment setup

To build using the docker file use the following command
docker build -f Dockerfile -t med_trans \
--build-arg UID=$(id -u) \
--build-arg GID=$(id -g) \
--build-arg USER=$(whoami) \
--build-arg GROUP=$(id -g -n) .

Usage:

  • Training: python classification.py
  • Training with DINO: python classification.py --dino
  • Testing (using json file): python classification.py --test
  • Testing (using saved checkpoint): python classification.py --checkpoint CheckpointName --test
  • Fine tune the learning rate: python classification.py --lr_finder

Configuration (json file)

  • dataset_params
    • dataset: Name of the dataset (ISIC2019, APTOS2019, DDSM)
    • data_location: Location that the datasets are located
    • train_transforms: Defines the augmentations for the training set
    • val_transforms: Defines the augmentations for the validation set
    • test_transforms: Defines the augmentations for the test set
  • dataloader_params: Defines the dataloader parameters (batch size, num_workers etc)
  • model_params
    • backbone_type: type of the backbone model (e.g. resnet50, deit_small)
    • transformers_params: Additional hyperparameters for the transformers
      • img_size: The size of the input images
      • patch_size: The patch size to use for patching the input
      • pretrained_type: If supervised it loads ImageNet weights that come from supervised learning. If dino it loads ImageNet weights that come from sefl-supervised learning with DINO.
    • pretrained: If True, it uses ImageNet pretrained weights
    • freeze_backbone: If True, it freezes the backbone network
    • DINO: It controls the hyperparameters for when training with DINO
  • optimization_params: Defines learning rate, weight decay, learning rate schedule etc.
    • optimizer: The default optimizer's parameters
      • type: The optimizer's type
      • autoscale_rl: If True it scales the learning rate based on the bach size
      • params: Defines the learning rate and the weght decay value
    • LARS_params: If use=True and bach size >= batch_act_thresh it uses LARS as optimizer
    • scheduler: Defines the learning rate schedule
      • type: A list of schedulers to use
      • params: Sets the hyperparameters of the optimizers
  • training_params: Defines the training parameters
    • model_name: The model's name
    • val_every: Sets the frequency of the valiidation step (epochs - float)
    • log_every: Sets the frequency of the logging (iterations - int)
    • save_best_model: If True it will save the bast model based on the validation metrics
    • log_embeddings: If True it creates U-maps on each validation step
    • knn_eval: If True, during validation it will also calculate the scores based on knn evalutation
    • grad_clipping: If > 0, it clips the gradients
    • use_tensorboard: If True, it will use tensorboard for logging instead of wandb
    • use_mixed_precision: If True, it will use mixed precision
    • save_dir: The dir to save the model's checkpoints etc.
  • system_params: Defines if GPUs are used, which GPUs etc.
  • log_params: Project and run name for the logger (we are using Weights & Biases by default)
  • lr_finder: Define the learning rate parameters
    • grid_search_params
      • min_pow, min_pow: The min and max power of 10 for the search
      • resolution: How many different learning rates to try
      • n_epochs: maximum epochs of the training session
      • random_lr: If True, it uses random learning rates withing the accepted range
      • keep_schedule: If True, it keeps the learning rate schedule
      • report_intermediate_steps: If True, it logs if validates throughout the training sessions
  • transfer_learning_params: Turns on or off transfer learning from pretrained models
    • use_pretrained: If True, it will use a pretrained model as a backbone
    • pretrained_model_name: The pretrained model's name
    • pretrained_path: If the prerained model's dir
Owner
Christos Matsoukas
PhD student in Deep Learning @ KTH Royal Institute of Technology
Christos Matsoukas
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023