Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

Overview

One2Set

This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”.

Our implementation is built on the source code from keyphrase-generation-rl and fastNLP. Thanks for their work.

If you use this code, please cite our paper:

@inproceedings{ye2021one2set,
  title={One2Set: Generating Diverse Keyphrases as a Set},
  author={Ye, Jiacheng and Gui, Tao and Luo, Yichao and Xu, Yige and Zhang, Qi},
  booktitle={Proceedings of ACL},
  year={2021}
}

Dependency

  • python 3.5+
  • pytorch 1.0+

Dataset

The datasets can be downloaded from here, which are the tokenized version of the datasets provided by Ken Chen:

  • The testsets directory contains the five datasets for testing (i.e., inspec, krapivin, nus, and semeval and kp20k), where each of the datasets contains test_src.txt and test_trg.txt.
  • The kp20k_separated directory contains the training and validation files (i.e., train_src.txt, train_trg.txt, valid_src.txt and valid_trg.txt).
  • Each line of the *_src.txt file is the source document, which contains the tokenized words of title <eos> abstract .
  • Each line of the *_trg.txt file contains the target keyphrases separated by an ; character. The <peos> is used to mark the end of present ground-truth keyphrases and train a separate set loss for SetTrans model. For example, each line can be like present keyphrase one;present keyphrase two;<peos>;absent keyprhase one;absent keyphrase two.

Quick Start

The whole process includes the following steps:

  • Preprocessing: The preprocess.py script numericalizes the train_src.txt, train_trg.txt,valid_src.txt and valid_trg.txt files, and produces train.one2many.pt, valid.one2many.pt and vocab.pt.
  • Training: The train.py script loads the train.one2many.pt, valid.one2many.pt and vocab.pt file and performs training. We evaluate the model every 8000 batches on the valid set, and the model will be saved if the valid loss is lower than the previous one.
  • Decoding: The predict.py script loads the trained model and performs decoding on the five test datasets. The prediction file will be saved, which is like predicted keyphrase one;predicted keyphrase two;…. For SetTrans, we ignore the $\varnothing$ predictions that represent the meaning of “no corresponding keyphrase”.
  • Evaluation: The evaluate_prediction.py script loads the ground-truth and predicted keyphrases, and calculates the [email protected]$ and [email protected]$ metrics.

For the sake of simplicity, we provide an one-click script in the script directory. You can run the following command to run the whole process with SetTrans model under One2Set paradigm:

bash scripts/run_one2set.sh

You can also run the baseline Transformer model under One2Seq paradigm with the following command:

bash scripts/run_one2seq.sh

Note:

  • Please download and unzip the datasets in the ./data directory first.
  • To run all the bash files smoothly, you may need to specify the correct home_dir (i.e., the absolute path to kg_one2set dictionary) and the gpu id for CUDA_VISIBLE_DEVICES. We provide a small amount of data to quickly test whether your running environment is correct. You can test by running the following command:
bash scripts/run_small_one2set.sh

Resources

You can download our trained model here. We also provide raw predictions and corresponding evaluation results of three runs with different random seeds here, which contains the following files:

test
├── Full_One2set_Copy_Seed27_Dropout0.1_LR0.0001_BS12_MaxLen6_MaxNum20_LossScalePre0.2_LossScaleAb0.1_Step2_SetLoss
│   ├── inspec
│   │   ├── predictions.txt
│   │   └── results_log_5_M_5_M_5_M.txt
│   ├── kp20k
│   │   ├── predictions.txt
│   │   └── results_log_5_M_5_M_5_M.txt
│   ├── krapivin
│   │   ├── predictions.txt
│   │   └── results_log_5_M_5_M_5_M.txt
│   ├── nus
│   │   ├── predictions.txt
│   │   └── results_log_5_M_5_M_5_M.txt
│   └── semeval
│       ├── predictions.txt
│       └── results_log_5_M_5_M_5_M.txt
├── Full_One2set_Copy_Seed527_Dropout0.1_LR0.0001_BS12_MaxLen6_MaxNum20_LossScalePre0.2_LossScaleAb0.1_Step2_SetLoss
│   ├── ...
└── Full_One2set_Copy_Seed9527_Dropout0.1_LR0.0001_BS12_MaxLen6_MaxNum20_LossScalePre0.2_LossScaleAb0.1_Step2_SetLoss
    ├── ...
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
Gesture recognition on Event Data

Event based Gesture Recognition Gesture recognition on Event Data usually involv

2 Feb 14, 2022
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t

Dahyun Kang 82 Dec 24, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
[NeurIPS 2021] "Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks" by Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, Yingyan Lin

Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks Yonggan Fu, Qixuan Yu, Yang Zhang, S

12 Dec 11, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
Original code for "Zero-Shot Domain Adaptation with a Physics Prior"

Zero-Shot Domain Adaptation with a Physics Prior [arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and J

Attila Lengyel 40 Dec 21, 2022
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023