Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

Overview

One2Set

This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”.

Our implementation is built on the source code from keyphrase-generation-rl and fastNLP. Thanks for their work.

If you use this code, please cite our paper:

@inproceedings{ye2021one2set,
  title={One2Set: Generating Diverse Keyphrases as a Set},
  author={Ye, Jiacheng and Gui, Tao and Luo, Yichao and Xu, Yige and Zhang, Qi},
  booktitle={Proceedings of ACL},
  year={2021}
}

Dependency

  • python 3.5+
  • pytorch 1.0+

Dataset

The datasets can be downloaded from here, which are the tokenized version of the datasets provided by Ken Chen:

  • The testsets directory contains the five datasets for testing (i.e., inspec, krapivin, nus, and semeval and kp20k), where each of the datasets contains test_src.txt and test_trg.txt.
  • The kp20k_separated directory contains the training and validation files (i.e., train_src.txt, train_trg.txt, valid_src.txt and valid_trg.txt).
  • Each line of the *_src.txt file is the source document, which contains the tokenized words of title <eos> abstract .
  • Each line of the *_trg.txt file contains the target keyphrases separated by an ; character. The <peos> is used to mark the end of present ground-truth keyphrases and train a separate set loss for SetTrans model. For example, each line can be like present keyphrase one;present keyphrase two;<peos>;absent keyprhase one;absent keyphrase two.

Quick Start

The whole process includes the following steps:

  • Preprocessing: The preprocess.py script numericalizes the train_src.txt, train_trg.txt,valid_src.txt and valid_trg.txt files, and produces train.one2many.pt, valid.one2many.pt and vocab.pt.
  • Training: The train.py script loads the train.one2many.pt, valid.one2many.pt and vocab.pt file and performs training. We evaluate the model every 8000 batches on the valid set, and the model will be saved if the valid loss is lower than the previous one.
  • Decoding: The predict.py script loads the trained model and performs decoding on the five test datasets. The prediction file will be saved, which is like predicted keyphrase one;predicted keyphrase two;…. For SetTrans, we ignore the $\varnothing$ predictions that represent the meaning of “no corresponding keyphrase”.
  • Evaluation: The evaluate_prediction.py script loads the ground-truth and predicted keyphrases, and calculates the [email protected]$ and [email protected]$ metrics.

For the sake of simplicity, we provide an one-click script in the script directory. You can run the following command to run the whole process with SetTrans model under One2Set paradigm:

bash scripts/run_one2set.sh

You can also run the baseline Transformer model under One2Seq paradigm with the following command:

bash scripts/run_one2seq.sh

Note:

  • Please download and unzip the datasets in the ./data directory first.
  • To run all the bash files smoothly, you may need to specify the correct home_dir (i.e., the absolute path to kg_one2set dictionary) and the gpu id for CUDA_VISIBLE_DEVICES. We provide a small amount of data to quickly test whether your running environment is correct. You can test by running the following command:
bash scripts/run_small_one2set.sh

Resources

You can download our trained model here. We also provide raw predictions and corresponding evaluation results of three runs with different random seeds here, which contains the following files:

test
├── Full_One2set_Copy_Seed27_Dropout0.1_LR0.0001_BS12_MaxLen6_MaxNum20_LossScalePre0.2_LossScaleAb0.1_Step2_SetLoss
│   ├── inspec
│   │   ├── predictions.txt
│   │   └── results_log_5_M_5_M_5_M.txt
│   ├── kp20k
│   │   ├── predictions.txt
│   │   └── results_log_5_M_5_M_5_M.txt
│   ├── krapivin
│   │   ├── predictions.txt
│   │   └── results_log_5_M_5_M_5_M.txt
│   ├── nus
│   │   ├── predictions.txt
│   │   └── results_log_5_M_5_M_5_M.txt
│   └── semeval
│       ├── predictions.txt
│       └── results_log_5_M_5_M_5_M.txt
├── Full_One2set_Copy_Seed527_Dropout0.1_LR0.0001_BS12_MaxLen6_MaxNum20_LossScalePre0.2_LossScaleAb0.1_Step2_SetLoss
│   ├── ...
└── Full_One2set_Copy_Seed9527_Dropout0.1_LR0.0001_BS12_MaxLen6_MaxNum20_LossScalePre0.2_LossScaleAb0.1_Step2_SetLoss
    ├── ...
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022
Official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch.

Multi-speaker DGP This repository provides official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch. O

sarulab-speech 24 Sep 07, 2022
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax

Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex

29 Jun 16, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"

Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our

Julian Rodemann 2 Mar 19, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
MLPs for Vision and Langauge Modeling (Coming Soon)

MLP Architectures for Vision-and-Language Modeling: An Empirical Study MLP Architectures for Vision-and-Language Modeling: An Empirical Study (Code wi

Yixin Nie 27 May 09, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022