(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Overview

Relational Embedding for Few-Shot Classification (ICCV 2021)

teaser

We propose to address the problem of few-shot classification by meta-learning “what to observe” and “where to attend” in a relational perspective. Our method leverages relational patterns within and between images via self-correlational representation (SCR) and cross-correlational attention (CCA). Within each image, the SCR module transforms a base feature map into a self-correlation tensor and learns to extract structural patterns from the tensor. Between the images, the CCA module computes cross-correlation between two image representations and learns to produce co-attention between them. (a), (b), and (c) visualize the activation maps of base features, self-correlational representation, and cross-correlational attention, respectively. Our Relational Embedding Network (RENet) combines the two relational modules to learn relational embedding in an end-to-end manner. In experimental evaluation, it achieves consistent improvements over state-of-the-art methods on four widely used few-shot classification benchmarks of miniImageNet, tieredImageNet, CUB-200-2011, and CIFAR-FS.

✔️ Requirements

⚙️ Conda environmnet installation

conda env create --name renet_iccv21 --file environment.yml
conda activate renet_iccv21

📚 Datasets

cd datasets
bash download_miniimagenet.sh
bash download_cub.sh
bash download_cifar_fs.sh
bash download_tieredimagenet.sh

🌳 Authors' checkpoints

cd checkpoints
bash download_checkpoints_renet.sh

The file structure should be as follows:

renet/
├── datasets/
├── model/
├── scripts/
├── checkpoints/
│   ├── cifar_fs/
│   ├── cub/
│   ├── miniimagenet/
│   └── tieredimagenet/
train.py
test.py
README.md
environment.yml

📌 Quick start: testing scripts

To test in the 5-way K-shot setting:

bash scripts/test/{dataset_name}_5wKs.sh

For example, to test ReNet on the miniImagenet dataset in the 5-way 1-shot setting:

bash scripts/test/miniimagenet_5w1s.sh

🔥 Training scripts

To train in the 5-way K-shot setting:

bash scripts/train/{dataset_name}_5wKs.sh

For example, to train ReNet on the CUB dataset in the 5-way 1-shot setting:

bash scripts/train/cub_5w1s.sh

Training & testing a 5-way 1-shot model on the CUB dataset using a TitanRTX 3090 GPU takes 41m 30s.

🎨 Few-shot classification results

Experimental results on few-shot classification datasets with ResNet-12 backbone. We report average results with 2,000 randomly sampled episodes.

datasets miniImageNet tieredImageNet
setups 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
accuracy 67.60 82.58 71.61 85.28
datasets CUB-200-2011 CIFAR-FS
setups 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
accuracy 79.49 91.11 74.51 86.60

🔍 Related repos

Our project references the codes in the following repos:

💌 Acknowledgement

We adopted the main code bases from DeepEMD, and we really appreciate it 😃 . We also sincerely thank all the ICCV reviewers, especially R#2, for valuable suggestions.

📜 Citing RENet

If you find our code or paper useful to your research work, please consider citing our work using the following bibtex:

@inproceedings{kang2021renet,
    author   = {Kang, Dahyun and Kwon, Heeseung and Min, Juhong and Cho, Minsu},
    title    = {Relational Embedding for Few-Shot Classification},
    booktitle= {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    year     = {2021}
}
Owner
Dahyun Kang
Dahyun Kang
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022