Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Overview

Variational Model Inversion Attacks

Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani

Fig1

  • Most commands are in run_scripts.
  • We outline a few example commands here.
    • Commands below end with a suffix . Setting =0 will run code locally. =1 was used with SLURM on a computing cluster.
  • The environment variable ROOT1 was set to my home directory.

Set up task (data & pretrained models, etc.)

Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo. This is used to make sure you can load and run the pretrained StyleGAN checkpoints.

For CelebA experiments:

  • Data --
    • download the "Align&Cropped Images" from the CelebA website into the directory data/img_align_celeba.
    • make sure in data/img_align_celeba, there are 000001.jpg to 202599.jpg.
    • download identity_CelebA.txt and put it in data/celeb_a.
  • Pretrained DCGAN -- download and untar this into the folder pretrained/gans/neurips2021-celeba.
  • Pretrained StyleGAN -- download and untar this into the folder pretrained/stylegan/neurips2021-celeba.
  • Pretrained Target Classifier -- download and untar this into the folder pretrained/classifiers/neurips2021-celeba.
  • Evaluation Classifier --
    • check out the InsightFace repo and place it in the same directory hierarchy as the present repo.
    • follow instructions in that repo, and download the ir_se50 model, which is used as the evaluation classifier.

Train VMI

CelebA

  • the script below runs VMI attack on the first 100 IDs and saves the results to results/celeba-id .
run_scripts/neurips2021-celeba-stylegan-flow.sh
  • generate and aggregate the attack samples by running the command below. The results will be saved to results/images_pt/stylegan-attack-with-labels-id0-100.pt.
python generate_vmi_attack_samples.py
  • evaluate the generated samples by running:
fprefix=results/images_pt/stylegan-attack-with-labels-id0-100

python evaluate_samples.py \
	--name load_samples_pt \
	--samples_pt_prefix $fprefix \
	--eval_what stats \
	--nclass 100

Acknowledgements

Code contain snippets from:
https://github.com/adjidieng/PresGANs
https://github.com/pytorch/examples/tree/master/mnist
https://github.com/wyharveychen/CloserLookFewShot

Owner
Jackson Wang
Postdoc at Stanford CS. PhD from UofT and the Vector Institute.
Jackson Wang
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
Implementation of Uformer, Attention-based Unet, in Pytorch

Uformer - Pytorch Implementation of Uformer, Attention-based Unet, in Pytorch. It will only offer the concat-cross-skip connection. This repository wi

Phil Wang 72 Dec 19, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
Steer OpenAI's Jukebox with Music Taggers

TagBox Steer OpenAI's Jukebox with Music Taggers! The closest thing we have to VQGAN+CLIP for music! Unsupervised Source Separation By Steering Pretra

Ethan Manilow 34 Nov 02, 2022
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"

Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W

Karn Watcharasupat 2 Oct 25, 2021
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022