Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Overview

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN

Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Requirements

Create a virtual environment:

virtualenv pasta --python=3.7
source pasta/bin/activate

Install required packages:

pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
pip install click requests tqdm pyspng ninja imageio-ffmpeg==0.4.3
pip install psutil scipy matplotlib opencv-python scikit-image==0.18.3 pycocotools
apt install libgl1-mesa-glx

Data Preparation

Since the copyright of the UPT dataset belongs to the E-commerce website Zalando and Zalora, we only release the image links in this link. For more details about the dataset and the crawling scripts, please send email to [email protected].

After downloading the raw RGB image, we run the pose estimator Openpose and human parser Graphonomy for each image to obtain the 18-points human keypoints and the 19-labels huamn parsing, respectively.

The dataset structure is recommended as:

+—UPT_256_192
|   +—UPT_subset1_256_192
|       +-image
|           +- e.g. image1.jpg
|           +- ...
|       +-keypoints
|           +- e.g. image1_keypoints.json
|           +- ...
|       +-parsing
|           +- e.g. image1.png
|           +- ...
|       +-train_pairs_front_list_0508.txt
|       +-test_pairs_front_list_shuffle_0508.txt
|   +—UPT_subset2_256_192
|       +-image
|           +- ...
|       +-keypoints
|           +- ...
|       +-parsing
|           +- ...
|       +-train_pairs_front_list_0508.txt
|       +-test_pairs_front_list_shuffle_0508.txt
|   +— ...

By using the raw RGB image, huamn keypoints, and human parsing, we can run the training script and the testing script.

Running Inference

We provide the pre-trained models of PASTA-GAN which are trained by using the full UPT dataset (i.e., our newly collected data, data from Deepfashion dataset, data from MPV dataset) with the resolution of 256 and 512 separately.

we provide a simple script to test the pre-trained model provided above on the UPT dataset as follow:

CUDA_VISIBLE_DEVICES=0 python3 -W ignore test.py \
    --network /datazy/Codes/PASTA-GAN/PASTA-GAN_fullbody_model/network-snapshot-004000.pkl \
    --outdir /datazy/Datasets/pasta-gan_results/unpaired_results_fulltryonds \
    --dataroot /datazy/Datasets/PASTA_UPT_256 \
    --batchsize 16

or you can run the bash script by using the following command:

bash test.sh 1

To test with higher resolution pretrained model (512x320), you can run the bash script by using the following command:

bash test.sh 2

Note that, in the testing script, the parameter --network refers to the path of the pre-trained model, the parameter --outdir refers to the path of the directory for generated results, the parameter --dataroot refers to the path of the data root. Before running the testing script, please make sure these parameters refer to the correct locations.

Running Training

Training the 256x192 PASTA-GAN full body model on the UPT dataset

  1. Download the UPT_256_192 training set.
  2. Download the VGG model from VGG_model, then put "vgg19_conv.pth" and "vgg19-dcbb9e9d" under the directory "checkpoints".
  3. Run bash train.sh 1.

Todo

  • Release the the pretrained model (256x192) and the inference script.
  • Release the training script.
  • Release the pretrained model (512x320).
  • Release the training script for model (512x320).

License

The use of this code is RESTRICTED to non-commercial research and educational purposes.

Detect roadway lanes using Python OpenCV for project during the 5th semester at DHBW Stuttgart for lecture in digital image processing.

Find Line Detection (Image Processing) Identifying lanes of the road is very common task that human driver performs. It's important to keep the vehicl

LMF 4 Jun 21, 2022
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran

Zhenning Li 26 Nov 19, 2022
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model

Xingang Pan 115 Dec 18, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
Segmentation for medical image.

EfficientSegmentation Introduction EfficientSegmentation is an open source, PyTorch-based segmentation framework for 3D medical image. Features A whol

68 Nov 28, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022