An Open-Source Package for Information Retrieval.

Overview

OpenMatch

An Open-Source Package for Information Retrieval.

😃 What's New

  • Top Spot on TREC-COVID Challenge (May 2020, Round2)

    The twin goals of the challenge are to evaluate search algorithms and systems for helping scientists, clinicians, policy makers, and others manage the existing and rapidly growing corpus of scientific literature related to COVID-19, and to discover methods that will assist with managing scientific information in future global biomedical crises.
    >> Reproduce Our Submit >> About COVID-19 Dataset >> Our Paper

Overview

OpenMatch integrates excellent neural methods and technologies to provide a complete solution for deep text matching and understanding. The documentation and tutorial of OpenMatch are available at here.

1/ Document Retrieval

Document Retrieval refers to extracting a set of related documents from large-scale document-level data based on user queries.

* Sparse Retrieval

Sparse Retriever is defined as a sparse bag-of-words retrieval model.

* Dense Retrieval

Dense Retriever performs retrieval by encoding documents and queries into dense low-dimensional vectors, and selecting the document that has the highest inner product with the query

2/ Document Reranking

Document reranking aims to further match user query and documents retrieved by the previous step with the purpose of obtaining a ranked list of relevant documents.

* Neural Ranker

Neural Ranker uses neural network as ranker to reorder documents.

* Feature Ensemble

Feature Ensemble can fuse neural features learned by neural ranker with the features of non-neural methods to obtain more robust performance

3/ Domain Transfer Learning

Domain Transfer Learning can leverages external knowledge graphs or weak supervision data to guide and help ranker to overcome data scarcity.

* Knowledge Enhancemnet

Knowledge Enhancement incorporates entity semantics of external knowledge graphs to enhance neural ranker.

* Data Augmentation

Data Augmentation leverages weak supervision data to improve the ranking accuracy in certain areas that lacks large scale relevance labels.

Stage Model Paper
1/ Sparse Retrieval BM25 Best Match25 ~Tool
1/ Dense Retrieval ANN Approximate nearest neighbor ~Tool
2/ Neural Ranker K-NRM End-to-End Neural Ad-hoc Ranking with Kernel Pooling ~Paper
2/ Neural Ranker Conv-KNRM Convolutional Neural Networks for Soft-Matching N-Grams in Ad-hoc Search ~Paper
2/ Neural Ranker TK Interpretable & Time-Budget-Constrained Contextualization for Re-Ranking ~Paper
2/ Neural Ranker BERT BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding ~Paper
2/ Feature Ensemble Coordinate Ascent Linear feature-based models for information retrieval. Information Retrieval ~Paper
3/ Knowledge Enhancement EDRM Entity-Duet Neural Ranking: Understanding the Role of Knowledge Graph Semantics in Neural Information Retrieval ~Paper
3/ Data Augmentation ReInfoSelect Selective Weak Supervision for Neural Information Retrieval ~Paper

Note that the BERT model is following huggingface's implementation - transformers, so other bert-like models are also available in our toolkit, e.g. electra, scibert.

Installation

* From PyPI

pip install git+https://github.com/thunlp/OpenMatch.git

* From Source

git clone https://github.com/thunlp/OpenMatch.git
cd OpenMatch
python setup.py install

* From Docker

To build an OpenMatch docker image from Dockerfile

docker build -t <image_name> .

To run your docker image just built above as a container

docker run --gpus all --name=<container_name> -it -v /:/all/ --rm <image_name>:<TAG>

Quick Start

* Detailed examples are available here.

import torch
import OpenMatch as om

query = "Classification treatment COVID-19"
doc = "By retrospectively tracking the dynamic changes of LYM% in death cases and cured cases, this study suggests that lymphocyte count is an effective and reliable indicator for disease classification and prognosis in COVID-19 patients."

* For bert-like models:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased")
input_ids = tokenizer.encode(query, doc)
model = om.models.Bert("allenai/scibert_scivocab_uncased")
ranking_score, ranking_features = model(torch.tensor(input_ids).unsqueeze(0))

* For other models:

tokenizer = om.data.tokenizers.WordTokenizer(pretrained="./data/glove.6B.300d.txt")
query_ids, query_masks = tokenizer.process(query, max_len=16)
doc_ids, doc_masks = tokenizer.process(doc, max_len=128)
model = om.models.KNRM(vocab_size=tokenizer.get_vocab_size(),
                       embed_dim=tokenizer.get_embed_dim(),
                       embed_matrix=tokenizer.get_embed_matrix())
ranking_score, ranking_features = model(torch.tensor(query_ids).unsqueeze(0),
                                        torch.tensor(query_masks).unsqueeze(0),
                                        torch.tensor(doc_ids).unsqueeze(0),
                                        torch.tensor(doc_masks).unsqueeze(0))

* The GloVe can be downloaded using:

wget http://nlp.stanford.edu/data/glove.6B.zip -P ./data
unzip ./data/glove.6B.zip -d ./data

* Evaluation

metric = om.Metric()
res = metric.get_metric(qrels, ranking_list, 'ndcg_cut_20')
res = metric.get_mrr(qrels, ranking_list, 'mrr_cut_10')

Experiments

* Ad-hoc Search

Retriever Reranker Coor-Ascent ClueWeb09 Robust04 ClueWeb12
SDM KNRM - 0.1880 0.3016 0.0968
SDM Conv-KNRM - 0.1894 0.2907 0.0896
SDM EDRM - 0.2015 0.2993 0.0937
SDM TK - 0.2306 0.2822 0.0966
SDM BERT Base - 0.2701 0.4168 0.1183
SDM ELECTRA Base - 0.2861 0.4668 0.1078

* MS MARCO Passage Ranking

Retriever Reranker Coor-Ascent dev eval
BM25 BERT Base - 0.349 0.345
BM25 ELECTRA Base - 0.352 0.344
BM25 RoBERTa Large - 0.386 0.375
BM25 ELECTRA Large - 0.388 0.376

* MS MARCO Document Ranking

Retriever Reranker Coor-Ascent dev eval
ANCE FirstP - - 0.373 0.334
ANCE MaxP - - 0.383 0.342
ANCE FirstP+BM25 BERT Base FirstP + 0.431 0.380
ANCE MaxP BERT Base MaxP + 0.432 0.391

* Classic Features

Methods ClueWeb09-B Robust04 TREC-COVID
[email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
BM25 (Anserini) 0.2773 0.1426 0.4129 0.1117 0.6979 0.7670
RankSVM (Dai et al.) 0.289 n.a. 0.420 n.a. n.a. n.a.
RankSVM (OpenMatch) 0.2825 0.1476 0.4309 0.1173 0.6995 0.7570
Coor-Ascent (Dai et al.) 0.295 n.a. 0.427 n.a. n.a. n.a.
Coor-Ascent (OpenMatch) 0.2969 0.1581 0.4340 0.1171 0.7041 0.7770

Contribution

Thanks to all the people who contributed to OpenMatch!

Kaitao Zhang, Si Sun, Zhenghao Liu, Aowei Lu

Project Organizers

  • Zhiyuan Liu
  • Chenyan Xiong
  • Maosong Sun

Citation

@inproceedings{openmatch,
  author = {Liu, Zhenghao and Zhang, Kaitao and Xiong, Chenyan and Liu, Zhiyuan and Sun, Maosong},
  title = {OpenMatch: An Open Source Library for Neu-IR Research},
  booktitle = {Proceedings of SIGIR},
  year = {2021},
  url = {https://doi.org/10.1145/3404835.3462789},
  pages = {2531–2535}
}
Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

105 Dec 18, 2022
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023
Code Repository for The Kaggle Book, Published by Packt Publishing

The Kaggle Book Data analysis and machine learning for competitive data science Code Repository for The Kaggle Book, Published by Packt Publishing "Lu

Packt 1.6k Jan 07, 2023
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
Tensorflow/Keras Plug-N-Play Deep Learning Models Compilation

DeepBay This project was created with the objective of compile Machine Learning Architectures created using Tensorflow or Keras. The architectures mus

Whitman Bohorquez 4 Sep 26, 2022
PyTorch implementation of SmoothGrad: removing noise by adding noise.

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022