An Open-Source Package for Information Retrieval.

Overview

OpenMatch

An Open-Source Package for Information Retrieval.

😃 What's New

  • Top Spot on TREC-COVID Challenge (May 2020, Round2)

    The twin goals of the challenge are to evaluate search algorithms and systems for helping scientists, clinicians, policy makers, and others manage the existing and rapidly growing corpus of scientific literature related to COVID-19, and to discover methods that will assist with managing scientific information in future global biomedical crises.
    >> Reproduce Our Submit >> About COVID-19 Dataset >> Our Paper

Overview

OpenMatch integrates excellent neural methods and technologies to provide a complete solution for deep text matching and understanding. The documentation and tutorial of OpenMatch are available at here.

1/ Document Retrieval

Document Retrieval refers to extracting a set of related documents from large-scale document-level data based on user queries.

* Sparse Retrieval

Sparse Retriever is defined as a sparse bag-of-words retrieval model.

* Dense Retrieval

Dense Retriever performs retrieval by encoding documents and queries into dense low-dimensional vectors, and selecting the document that has the highest inner product with the query

2/ Document Reranking

Document reranking aims to further match user query and documents retrieved by the previous step with the purpose of obtaining a ranked list of relevant documents.

* Neural Ranker

Neural Ranker uses neural network as ranker to reorder documents.

* Feature Ensemble

Feature Ensemble can fuse neural features learned by neural ranker with the features of non-neural methods to obtain more robust performance

3/ Domain Transfer Learning

Domain Transfer Learning can leverages external knowledge graphs or weak supervision data to guide and help ranker to overcome data scarcity.

* Knowledge Enhancemnet

Knowledge Enhancement incorporates entity semantics of external knowledge graphs to enhance neural ranker.

* Data Augmentation

Data Augmentation leverages weak supervision data to improve the ranking accuracy in certain areas that lacks large scale relevance labels.

Stage Model Paper
1/ Sparse Retrieval BM25 Best Match25 ~Tool
1/ Dense Retrieval ANN Approximate nearest neighbor ~Tool
2/ Neural Ranker K-NRM End-to-End Neural Ad-hoc Ranking with Kernel Pooling ~Paper
2/ Neural Ranker Conv-KNRM Convolutional Neural Networks for Soft-Matching N-Grams in Ad-hoc Search ~Paper
2/ Neural Ranker TK Interpretable & Time-Budget-Constrained Contextualization for Re-Ranking ~Paper
2/ Neural Ranker BERT BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding ~Paper
2/ Feature Ensemble Coordinate Ascent Linear feature-based models for information retrieval. Information Retrieval ~Paper
3/ Knowledge Enhancement EDRM Entity-Duet Neural Ranking: Understanding the Role of Knowledge Graph Semantics in Neural Information Retrieval ~Paper
3/ Data Augmentation ReInfoSelect Selective Weak Supervision for Neural Information Retrieval ~Paper

Note that the BERT model is following huggingface's implementation - transformers, so other bert-like models are also available in our toolkit, e.g. electra, scibert.

Installation

* From PyPI

pip install git+https://github.com/thunlp/OpenMatch.git

* From Source

git clone https://github.com/thunlp/OpenMatch.git
cd OpenMatch
python setup.py install

* From Docker

To build an OpenMatch docker image from Dockerfile

docker build -t <image_name> .

To run your docker image just built above as a container

docker run --gpus all --name=<container_name> -it -v /:/all/ --rm <image_name>:<TAG>

Quick Start

* Detailed examples are available here.

import torch
import OpenMatch as om

query = "Classification treatment COVID-19"
doc = "By retrospectively tracking the dynamic changes of LYM% in death cases and cured cases, this study suggests that lymphocyte count is an effective and reliable indicator for disease classification and prognosis in COVID-19 patients."

* For bert-like models:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased")
input_ids = tokenizer.encode(query, doc)
model = om.models.Bert("allenai/scibert_scivocab_uncased")
ranking_score, ranking_features = model(torch.tensor(input_ids).unsqueeze(0))

* For other models:

tokenizer = om.data.tokenizers.WordTokenizer(pretrained="./data/glove.6B.300d.txt")
query_ids, query_masks = tokenizer.process(query, max_len=16)
doc_ids, doc_masks = tokenizer.process(doc, max_len=128)
model = om.models.KNRM(vocab_size=tokenizer.get_vocab_size(),
                       embed_dim=tokenizer.get_embed_dim(),
                       embed_matrix=tokenizer.get_embed_matrix())
ranking_score, ranking_features = model(torch.tensor(query_ids).unsqueeze(0),
                                        torch.tensor(query_masks).unsqueeze(0),
                                        torch.tensor(doc_ids).unsqueeze(0),
                                        torch.tensor(doc_masks).unsqueeze(0))

* The GloVe can be downloaded using:

wget http://nlp.stanford.edu/data/glove.6B.zip -P ./data
unzip ./data/glove.6B.zip -d ./data

* Evaluation

metric = om.Metric()
res = metric.get_metric(qrels, ranking_list, 'ndcg_cut_20')
res = metric.get_mrr(qrels, ranking_list, 'mrr_cut_10')

Experiments

* Ad-hoc Search

Retriever Reranker Coor-Ascent ClueWeb09 Robust04 ClueWeb12
SDM KNRM - 0.1880 0.3016 0.0968
SDM Conv-KNRM - 0.1894 0.2907 0.0896
SDM EDRM - 0.2015 0.2993 0.0937
SDM TK - 0.2306 0.2822 0.0966
SDM BERT Base - 0.2701 0.4168 0.1183
SDM ELECTRA Base - 0.2861 0.4668 0.1078

* MS MARCO Passage Ranking

Retriever Reranker Coor-Ascent dev eval
BM25 BERT Base - 0.349 0.345
BM25 ELECTRA Base - 0.352 0.344
BM25 RoBERTa Large - 0.386 0.375
BM25 ELECTRA Large - 0.388 0.376

* MS MARCO Document Ranking

Retriever Reranker Coor-Ascent dev eval
ANCE FirstP - - 0.373 0.334
ANCE MaxP - - 0.383 0.342
ANCE FirstP+BM25 BERT Base FirstP + 0.431 0.380
ANCE MaxP BERT Base MaxP + 0.432 0.391

* Classic Features

Methods ClueWeb09-B Robust04 TREC-COVID
[email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
BM25 (Anserini) 0.2773 0.1426 0.4129 0.1117 0.6979 0.7670
RankSVM (Dai et al.) 0.289 n.a. 0.420 n.a. n.a. n.a.
RankSVM (OpenMatch) 0.2825 0.1476 0.4309 0.1173 0.6995 0.7570
Coor-Ascent (Dai et al.) 0.295 n.a. 0.427 n.a. n.a. n.a.
Coor-Ascent (OpenMatch) 0.2969 0.1581 0.4340 0.1171 0.7041 0.7770

Contribution

Thanks to all the people who contributed to OpenMatch!

Kaitao Zhang, Si Sun, Zhenghao Liu, Aowei Lu

Project Organizers

  • Zhiyuan Liu
  • Chenyan Xiong
  • Maosong Sun

Citation

@inproceedings{openmatch,
  author = {Liu, Zhenghao and Zhang, Kaitao and Xiong, Chenyan and Liu, Zhiyuan and Sun, Maosong},
  title = {OpenMatch: An Open Source Library for Neu-IR Research},
  booktitle = {Proceedings of SIGIR},
  year = {2021},
  url = {https://doi.org/10.1145/3404835.3462789},
  pages = {2531–2535}
}
Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
Help you understand Manual and w/ Clutch point while driving.

简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
Addon and nodes for working with structural biology and molecular data in Blender.

Molecular Nodes 🧬 🔬 💻 Buy Me a Coffee to Keep Development Going! Join a Community of Blender SciVis People! What is Molecular Nodes? Molecular Node

Brady Johnston 456 Jan 08, 2023
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Zhao Zhang 35 Nov 25, 2022
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022