This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Overview

Stability Audit

This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic AI and Crystal. This codebase supports the 2021 manuscript entitled "External Stability Auditing to Test the Validity of Personality Prediction in AI Hiring," authored by Alene K. Rhea, Kelsey Markey, Lauren D'Arinzo, Hilke Schellmann, Mona Sloane, Paul Squires, and Julia Stoyanovich.

Code

The Jupyter notebook analysis.ipynb reads in the survey and system output data, and performs all stability analysis. The notebook begins with a demographic summarization, and then estimates stability metrics for each facet experiment as described in the manuscript.

Spearman's rank correlation is used to measure rank-order stability, two-tailed Wilcoxon signed rank testing is used to measure locational stability, and normalized L1 distance is used to measure total change across each facet. Medians of each facet treatment are estimated as well. Results are saved to the results directory, organized by metric and by system (Humantic AI and Crystal). Subgroup analysis is performed for rank-order stability and total change. Highlighting is employed to indicate correlations below 0.95 and 0.90, and Wilcoxon p-values below the Bonferroni and Benjamini-Hochberg corrected thresholds. Scatterplots are produced to compare the outputs from each pair of facet treatments. Boxplots illustrate total change. Boxplots comparing relevant subgroup analysis for each facet are produced as well.

Data

Survey

Anonymized survey results are saved in data/survey.csv. Columns described in the table below.

Column Type Description Values
Participant_ID str Unique ID used to identify participant. "ID2" - "ID101" (missing IDs indicate potential subjects were screened out of participation)
gender str Participant gender, as reported in the survey. Pre-processed to mask rare responses in order to preserve anonymity. ["Male" "Female" "Other Gender"]
race str Participant race, as reported in the survey. Pre-processed to mask rare responses in order to preserve anonymity. Empty entries indicates participants declined to self-identify their race in the survey. ["Asian" "White" "Other Race" NaN]
birth_country str Participant birth country, as reported in the survey. Pre-processed to mask rare responses in order to preserve anonymity. Empty entries indicates participants declined to provide their birth country in the survey. ["China" "India" "USA" "Other Country" NaN]
primary_language str Primary language of participant, as reported in the survey. ["English" "Other Langauge"]
resume bool Boolean flag indicating whether participant provided a resume in the survey. ["True" "False"]
linkedin bool Boolean flag indicating whether participant provided a LinkedIn in the survey. ["True" "False"]
twitter bool Boolean flag indicating whether participant provided a public Twitter handle in the survey. ["True" "False"]
linkedin_in_orig_resume bool Boolean flag indicating whether participant included a reference to their LinkedIn in the resume they submitted. Empty entries indicate participants did not submit a resume. ["True" "False" NaN]
orig_embed_type str Description of the method by which the participant referenced their LinkedIn in their submitted resume. Empty entries indicate participant did not submit a resume containing a reference to LinkedIn. ["Full url hyperlinked" "Full url not hyperlinked" "Text hyperlinked" "Other not hyperlinked" NaN]
orig_file_type str Filetype of the resume submitted by the participant. Empty entries indicate participants did not submit a resume. ["pdf" "docx" "txt" NaN]

Humantic AI and Crystal Output

Output from Humantic AI and Crystal is saved in the data directory. Each run is saved as a CSV and is named with its Run ID. Tables 3 and 4 in the manuscript (reproduced below) provide details of each run. Each file contains one row for each submitted input. Participant_ID provides a unique key, and output_success is a Boolean flag indicating that the system successfully produced output from the given input. Wherever output_success is true, there will be numeric predictions for each trait. Crystal results contain predictions for DiSC traits, and Humantic AI results contain predictions for DiSC traits and Big Five traits.

Run ID System Description Run Dates
HRo1 Humantic AI Original Resume 11/23/2020 - 01/14/2021
HRi1 Humantic AI De-Identified Resume 03/20/2021 - 03/28/2021
HRi2 Humantic AI De-Identified Resume 04/20/2021 - 04/28/2021
HRi3 Humantic AI De-Identified Resume 04/20/2021 - 04/28/2021
HRd1 Humantic AI DOCX Resume 03/20/2021 - 03/28/2021
HRu1 Humantic AI URL-Embedded Resume 04/09/2021 - 04/11/2021
HL1 Humantic AI LinkedIn 11/23/2020 - 01/14/2021
HL2 Humantic AI LinkedIn 08/10/2021 - 08/11/2021
HT1 Humantic AI Twitter 11/23/2020 - 01/14/2021
HT2 Humantic AI Twitter 08/10/2021 - 08/11/2021
CRr1 Crystal Raw Text Resume 03/31/2021 - 04/02/2021
CRr2 Crystal Raw Text Resume 05/01/2021 - 05/03/2021
CRr3 Crystal Raw Text Resume 05/01/2021 - 05/03/2021
CRp1 Crystal PDF Resume 11/23/2020 - 01/14/2021
CL1 Crystal LinkedIn 11/23/2020 - 01/14/2021
CL2 Crystal LinkedIn 09/13/2020 - 09/16/2021
Owner
Data, Responsibly
responsible data management: platform and tools
Data, Responsibly
Code for our paper: Online Variational Filtering and Parameter Learning

Variational Filtering To run phi learning on linear gaussian (Fig1a) python linear_gaussian_phi_learning.py To run phi and theta learning on linear g

16 Aug 14, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Active Learning with the Nvidia TLT Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT). In this tutorial, we will show you ho

Lightly 25 Dec 03, 2022
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
Source Code of NeurIPS21 paper: Recognizing Vector Graphics without Rasterization

YOLaT-VectorGraphicsRecognition This repository is the official PyTorch implementation of our NeurIPS-2021 paper: Recognizing Vector Graphics without

Microsoft 49 Dec 20, 2022
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022