Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Overview

Degree-Quant

This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Neural Networks. At time of writing, only the core method + experiments on Reddit-Binary have been ported over. We may add the remaining experiments at a later date; however, extensive experiment details are supplied in the appendix of the camera ready paper. We do not include the nQAT method in the codebase either for the sake of cleanliness; see the fairseq repo if you are interested in implementing this yourself.

This code is useful primarily for downstream users who want to quickly experiment with different quantization methods applied to GNNs. You will most likely be interested in the dq folder. For each layer, you can supply a dictionary of functions that when called returns a quantizer; see reddit_binary/gin.py for an example. This should enable you to quickly plug-in your own quantization implementations without needing to modify the layers we supplied.

Running the runall_reddit_binary.sh script will launch the quantization experiments for reddit binary. We include some output from running our code on reddit binary in the runs folder.

Dependencies

This code has been tested to work with PyTorch 1.7 and Torch Geometric 1.6.3

Improving this Work

This work is by no means complete. Our study merely identified the issues that will arise when trying to quantize GNNs, and it is likely that you can improve upon our methods in several ways:

  1. The runtime of our method is very slow. It is tolerable for the results, but ideally we would make the method faster. We supply a --sample_prop flag for the Reddit-Binary experiments that allows you to use sampling on tensors before running the percentile operation. We supply no guarantees on this, but it does seem to offer some improvements to runtime with little noticeable change in accuracy.
  2. You may want to consider using learned step sizes -- see the paper on this topic by Esser et al. at ICLR 2020.
  3. Robust quantization is another approach that might help -- these works focus on making the network less sensitive to changes in the quantization parameter choices.

We expand on all this in the appendix of the camera ready paper.

Citing this Work

@inproceedings{
tailor2021degreequant,
title={Degree-Quant: Quantization-Aware Training for Graph Neural Networks},
author={Shyam A. Tailor and Javier Fernandez-Marques and Nicholas D. Lane},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=NSBrFgJAHg}
}
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"

Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W

50 Dec 11, 2022
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
Nicholas Lee 3 Jan 09, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
Code for classifying international patents based on the text of their titles/abstracts

Patent Classification Goal: To train a machine learning classifier that can automatically classify international patents downloaded from the WIPO webs

Prashanth Rao 1 Nov 08, 2022
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
PyVideoAI: Action Recognition Framework

This reposity contains official implementation of: Capturing Temporal Information in a Single Frame: Channel Sampling Strategies for Action Recognitio

Kiyoon Kim 22 Dec 29, 2022
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022