Extreme Lightwegith Portrait Segmentation

Overview

Extreme Lightwegith Portrait Segmentation

Please go to this link to download code

Requirements

  • python 3
  • pytorch >= 0.4.1
  • torchvision==0.2.1
  • opencv-python==3.4.2.17
  • numpy
  • tensorflow >=1.13.0
  • visdom

Model

ExtremeC3Net (paper)

Hyojin Park, Lars Lowe Sjösund, YoungJoon Yoo, Jihwan Bang, Nojun Kwak.

"ExtremeC3Net: Extreme Lightweight Portrait Segmentation Networks using Advanced C3-modules"

  • config file : extremeC3Net.json
  • Param : 0.038 M
  • Flop : 0.128 G
  • IoU : 94.98

SINet (paper) Accepted in WACV2020

Hyojin Park, Lars Lowe Sjösund, YoungJoon Yoo, Nicolas Monet, Jihwan Bang, Nojun Kwak

SINet: Extreme Lightweight Portrait Segmentation Networks with Spatial Squeeze Modules and Information Blocking Decoder

  • config file : SINet.json
  • Param : 0.087 M
  • Flop : 0.064 G
  • IoU : 95.2

Run example

  • Preparing dataset

Download datasets if you use audgmented dataset, fix the code in dataloader.py in line 20 depending on location of augmented dataset. Also, please make different pickle file for Augmented dataset and baseline dataset.

  • Train

1 . ExtremeC3Net

python main.py --c ExtremeC3Net.json

2 . SINet

python main.py --c SINet.json

Additonal Dataset

We make augmented dataset from Baidu fashion dataset.

The original Baidu dataset link is here

EG1800 dataset link what I used in here

Our augmented dataset is here. We use all train and val dataset for training segmentation model.

CityScape

If you want SINet code for cityscapes dataset, please go to this link.

Citation

If our works is useful to you, please add two papers.

@article{park2019extremec3net,
  title={ExtremeC3Net: Extreme Lightweight Portrait Segmentation Networks using Advanced C3-modules},
  author={Park, Hyojin and Sj{\"o}sund, Lars Lowe and Yoo, YoungJoon and Kwak, Nojun},
  journal={arXiv preprint arXiv:1908.03093},
  year={2019}
}

@article{park2019sinet,
  title={SINet: Extreme Lightweight Portrait Segmentation Networks with Spatial Squeeze Modules and Information Blocking Decoder},
  author={Park, Hyojin and Sj{\"o}sund, Lars Lowe and Monet, Nicolas and Yoo, YoungJoon and Kwak, Nojun},
  journal={arXiv preprint arXiv:1911.09099},
  year={2019}
}

Acknowledge

We are grateful to Clova AI, NAVER with valuable discussions.

I also appreciate my co-authors Lars Lowe Sjösund and YoungJoon Yoo from Clova AI, NAVER, Nicolas Monet from NAVER LABS Europe and Jihwan Bang from Search Solutions, Inc

Owner
HYOJINPARK
HYOJINPARK
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales

IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales. In this case, we ended up using XGBoost because it was the o

1 Jan 04, 2022
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

AI-Health @NSCC-gz 83 Dec 24, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv] This is the official repository for CDTrans: Cross-domain Transformer for

238 Dec 22, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
Pytorch implementation of the Variational Recurrent Neural Network (VRNN).

VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th

emmanuel 251 Dec 17, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022