An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Overview

Multi-Car Racing Gym Environment

This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment.

This environment is a simple multi-player continuous contorl task. The state consists of 96x96 pixels for each player. The per-player reward is -0.1 every timestep and +1000/num_tiles * (num_agents-past_visitors)/num_agents for each tile visited. For example, in a race with 2 agents, the first agent to visit a tile receives a reward of +1000/num_tiles and the second agent to visit the tile receives a reward of +500/num_tiles for that tile. Each agent can only be rewarded once for visiting a particular tile. The motivation behind this reward structure is to be sufficiently dense for simple learnability of the basic driving skill while incentivising competition.

Installation

git clone https://github.com/igilitschenski/multi_car_racing.git
cd multi_car_racing
pip install -e .

Basic Usage

After installation, the environment can be tried out by running:

python -m gym_multi_car_racing.multi_car_racing

This will launch a two-player variant (each player in its own window) that can be controlled via the keyboard (player 1 via arrow keys and player 2 via W, A, S, D).

Let's quickly walk through how this environment can be used in your code:

import gym
import gym_multi_car_racing

env = gym.make("MultiCarRacing-v0", num_agents=2, direction='CCW',
        use_random_direction=True, backwards_flag=True, h_ratio=0.25,
        use_ego_color=False)

obs = env.reset()
done = False
total_reward = 0

while not done:
  # The actions have to be of the format (num_agents,3)
  # The action format for each car is as in the CarRacing-v0 environment.
  action = my_policy(obs)

  # Similarly, the structure of this is the same as in CarRacing-v0 with an
  # additional dimension for the different agents, i.e.
  # obs is of shape (num_agents, 96, 96, 3)
  # reward is of shape (num_agents,)
  # done is a bool and info is not used (an empty dict).
  obs, reward, done, info = env.step(action)
  total_reward += reward
  env.render()

print("individual scores:", total_reward)

Overview of environment parameters:

Parameter Type Description
num_agents int Number of agents in environment (Default: 2)
direction str Winding direction of the track. Can be 'CW' or 'CCW' (Default: 'CCW')
use_random_direction bool Randomize winding direction of the track. Disregards direction if enabled (Default: True).
backwards_flag bool Shows a small flag if agent driving backwards (Default: True).
h_ratio float Controls horizontal agent location in the state (Default: 0.25)
use_ego_color bool In each view the ego vehicle has the same color if activated (Default: False).

This environment contains the CarRacing-v0 environment as a special case. It can be created via

env = gym.make("MultiCarRacing-v0", num_agents=1, use_random_direction=False, 
        backwards_flag=False)

Deprecation Warning: We might further simplify the environment in the future. Our current thoughts on deprecation concern the following functionalities.

  • The direction related arguments (use_random_direction & direction) were initially aded to make driving fairer as the agents' spawning locations were fixed. We resolved this unfairnes by randomizing the start positions of the agents instead.
  • The impact of backwards_flag seems very little in practice.
  • Similarly, it was interesting to play around with placing the agent at different horizontal locations of the observation (via h_ratio) but the default from CarRacing-v0 ended up working well.
  • The environment also contains some (not active) code on allowing penalization of driving backwards. We were worried that agents might go backwards to have more tiles on which they are first but it turned out not to be necessary for successfull learning.

We are interested in any feedback regarding these planned deprecations.

Citation

If you find this environment useful, please cite our CoRL 2020 paper:

@inproceedings{SSG2020,
    title={Deep Latent Competition: Learning to Race Using Visual
      Control Policies in Latent Space},
    author={Wilko Schwarting and Tim Seyde and Igor Gilitschenski
      and Lucas Liebenwein and Ryan Sander and Sertac Karaman and Daniela Rus},
    booktitle={Conference on Robot Learning},
    year={2020}
}
Owner
Igor Gilitschenski
Igor Gilitschenski
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
Social Fabric: Tubelet Compositions for Video Relation Detection

Social-Fabric Social Fabric: Tubelet Compositions for Video Relation Detection This repository contains the code and results for the following paper:

Shuo Chen 7 Aug 09, 2022
FewBit — a library for memory efficient training of large neural networks

FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back

24 Oct 22, 2022
CowHerd is a partially-observed reinforcement learning environment

CowHerd is a partially-observed reinforcement learning environment, where the player walks around an area and is rewarded for milking cows. The cows try to escape and the player can place fences to h

Danijar Hafner 6 Mar 06, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

445 Jan 02, 2023
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022
This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize over continuous domains by Brandon Amos

Tutorial on Amortized Optimization This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize

Meta Research 144 Dec 26, 2022
Machine Learning Platform for Kubernetes

Reproduce, Automate, Scale your data science. Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applica

polyaxon 3.2k Dec 23, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Єабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🩌 🎄 ☃ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023