VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Related tags

Deep LearningMMA-Net
Overview

Preparation

  1. Please see dataset/README.md to get more details about our datasets-VIL100

  2. Please see INSTALL.md to install environment and evaluation tools

  3. Before training, we should download datasets-VIL100 and models

  4. Put them under this structure

      MMA-Net
           |----INSTALL.md
           |----README.md
           |----dataset
           |------|-----VIL100
           |----models
           |----evaluation
           |----options.py
           |----libs
           |----requirements.txt
           |----train.py
           |----test.py
    

Training and Testing

  1. To train the MMA network, run following command

    python3 train.py --gpu ${GPU-IDS}
  2. To test the MMA network, run following command

    python3 test.py

    The test results will be saved as indexed png file at ${root}/${output}/${valset}.

    Additionally, you can modify some setting parameters in options.py to change training configuration.

Evaluation

  1. generate accuracy, fp, fp

    python evaluate_acc.py      # Please modify `pre_dir_name` and `json_dir_name` in evaluate_acc.py
    
  2. Install CULane evaluation tools, please see INSTALL.md

  3. generate F, mIoUevaluate_acc after the CULane evaluation tools are installed

    1. all pred txt files will be generated under MMA-Net/evaluation/txt/pred_txt after this step

      python generate_iou_pred_txt.py      # Please modify `pre_dir_name` and `json_path` in  `generate_iou_pred_txt.py`
      
    2. results_MMA and temp_MMA will be generated under MMA-Net/evaluation/txt/results_txt after this step.

      results_MMA: evaluation results of each sequence

      temp_MMA: temporary files generated during evaluation, you can ignore them

      python evaluate_iou.py      # `data_root` should be set as your VIL-100 dataset path in `evaluate_iou.py`
      
    3. Attention!! if you want to evaluation results one more time, please delete all folders/files under MMA-Net/evaluation/txt/results_txt .

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images This repository contains the implementation of the following paper

Seonggwan Ko 9 Jul 30, 2022
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022