code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

Related tags

Deep LearningMMNet
Overview

MMNet

This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.".

Pre-requisite

conda create -n mmnet python==3.8.0
conda activate mmnet
conda install torch==1.8.1 torchvision==0.9.1
pip install matplotlib scikit-image pandas

for installation of gluoncvth (fcn-resnet101):

git clone https://github.com/StacyYang/gluoncv-torch.git
cd gluoncv-torch
python setup.py install

Reproduction

for test

Trained models are available on [google drive].

pascal with fcn-resnet101 backbone([email protected]:81.6%):

python test.py --alpha 0.05 --backbone fcn-resnet101 --ckp_name path\to\ckp_pascal_fcnres101.pth --resize 224,320

spair with fcn-resnet101 backbone([email protected]:46.6%):

python test.py --alpha 0.05 --benchmark spair --backbone fcn-resnet101 --ckp_name path\to\ckp_spair_fcnres101.pth --resize 224,320

Bibtex

If you use this code for your research, please consider citing:

@article{zhao2021multi,
  title={Multi-scale Matching Networks for Semantic Correspondence},
  author={Zhao, Dongyang and Song, Ziyang and Ji, Zhenghao and Zhao, Gangming and Ge, Weifeng and Yu, Yizhou},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}
You might also like...
A Pytorch implementation of
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Siamese-nn-semantic-text-similarity - A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task A PyTorch implementation of
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

《Dual-Resolution Correspondence Network》(NeurIPS 2020)
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Comments
  • NaN during training

    NaN during training

    Hi, congrats on your paper! I was trying to run your training code (with resnet 101 on pf-pascal) but directly after a couple of iterations, nan appear in the input. Have you ever seen this issue? Thanks

    opened by PruneTruong 2
  • In def calLayer1,i do not know where are self.conv1_1_down,self.conv1_2_down,self.conv1_3_down,self.wa_1

    In def calLayer1,i do not know where are self.conv1_1_down,self.conv1_2_down,self.conv1_3_down,self.wa_1

    Hello,this paper is very nice,i am very love it. I read your code,in Model.py, def calLayer1(self, feats): sum1 = self.conv1_1_down(self.msblock1_1(feats[1])) +
    self.conv1_2_down(self.msblock1_2(feats[2])) +
    self.conv1_3_down(self.msblock1_3(feats[3])) sum1 = self.wa_1(sum1) return sum1 I do not find where are these operation,self.conv1_1_down,self.conv1_2_down,self.conv1_3_down,self.wa_1,so where are these ,in which document.Thank you,looking forward to your reply.

    opened by liang532 1
  • How to prepare the PF-Pascal dataset?

    How to prepare the PF-Pascal dataset?

    I downloaded the PF-dataset-Pascal.zip from the Proposal Flow paper's web page, extracted it, and run the next line of command, but get errors about missing data files.

    Input:

    python test.py --alpha 0.05 --backbone fcn-resnet101 --ckp_name assets/model/mmnet_fcnresnet101_pascal.pth --resize 224,320
    

    Expected output: some results about the benchmark results.

    Actual output:

    currently executing test.py file.
    2021-11-19 02:01:59,172 - INFO - Options listed below:----------------
    2021-11-19 02:01:59,172 - INFO - name: framework_train
    2021-11-19 02:01:59,172 - INFO - benchmark: pfpascal
    2021-11-19 02:01:59,172 - INFO - thresh_type: auto
    2021-11-19 02:01:59,172 - INFO - backbone_name: fcn-resnet101
    2021-11-19 02:01:59,172 - INFO - ms_rate: 4
    2021-11-19 02:01:59,173 - INFO - feature_channel: 21
    2021-11-19 02:01:59,173 - INFO - batch: 5
    2021-11-19 02:01:59,173 - INFO - gpu: 0
    2021-11-19 02:01:59,173 - INFO - data_path: /data/SC_Dataset
    2021-11-19 02:01:59,173 - INFO - ckp_path: ./checkpoints_debug
    2021-11-19 02:01:59,173 - INFO - visualization_path: visualization
    2021-11-19 02:01:59,173 - INFO - model_type: MMNet
    2021-11-19 02:01:59,173 - INFO - ckp_name: assets/model/mmnet_fcnresnet101_pascal.pth
    2021-11-19 02:01:59,173 - INFO - log_path: ./logs/
    2021-11-19 02:01:59,173 - INFO - resize: 224,320
    2021-11-19 02:01:59,173 - INFO - max_kps_num: 50
    2021-11-19 02:01:59,173 - INFO - split_type: test
    2021-11-19 02:01:59,173 - INFO - alpha: 0.05
    2021-11-19 02:01:59,173 - INFO - resolution: 2
    2021-11-19 02:01:59,173 - INFO - Options all listed.------------------
    2021-11-19 02:01:59,173 - INFO - ckp file: assets/model/mmnet_fcnresnet101_pascal.pth
    Traceback (most recent call last):
      File "/home/runner/MMNet/test.py", line 127, in <module>
        test(logger, options)
      File "/home/runner/MMNet/test.py", line 65, in test
        test_dataset = Dataset.CorrespondenceDataset(
      File "/home/runner/MMNet/data/PascalDataset.py", line 32, in __init__
        self.train_data = pd.read_csv(self.spt_path)
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/util/_decorators.py", line 311, in wrapper
        return func(*args, **kwargs)
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 586, in read_csv
        return _read(filepath_or_buffer, kwds)
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 482, in _read
        parser = TextFileReader(filepath_or_buffer, **kwds)
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 811, in __init__
        self._engine = self._make_engine(self.engine)
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1040, in _make_engine
        return mapping[engine](self.f, **self.options)  # type: ignore[call-arg]
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 51, in __init__
        self._open_handles(src, kwds)
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/parsers/base_parser.py", line 222, in _open_handles
        self.handles = get_handle(
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/common.py", line 702, in get_handle
        handle = open(
    FileNotFoundError: [Errno 2] No such file or directory: '/data/SC_Dataset/PF-PASCAL/test_pairs.csv'
    

    P.S. Output of executing ls /data/SC_Dataset/PF-PASCAL/:

    Annotations  html  index.html  JPEGImages  parsePascalVOC.mat  ShowMatchingPairs
    
    opened by tjyuyao 2
  • How to reproduce the reported test accuracy?

    How to reproduce the reported test accuracy?

    By running given following command with code on the main branch:

    python test.py --alpha 0.05 --backbone fcn-resnet101 --ckp_name assets/model/mmnet_fcnresnet101_spair.pth --resize 224,320 --benchmark spair
    

    I expect to get the reported accuracy in the Table.2 of paper, i.e. 50.4 "all" accuracy, or spair with fcn-resnet101 backbone([email protected]:46.6%): as noted in the README.md file. However I get the following output, finding nowhere the related results. Can you point out the steps to reproduce the test accuracy?

    2021-11-19 00:49:54,452 - INFO - Options listed below:----------------
    2021-11-19 00:49:54,452 - INFO - name: framework_train
    2021-11-19 00:49:54,453 - INFO - benchmark: spair
    2021-11-19 00:49:54,453 - INFO - thresh_type: auto
    2021-11-19 00:49:54,454 - INFO - backbone_name: fcn-resnet101
    2021-11-19 00:49:54,455 - INFO - ms_rate: 4
    2021-11-19 00:49:54,455 - INFO - feature_channel: 21
    2021-11-19 00:49:54,456 - INFO - batch: 5
    2021-11-19 00:49:54,456 - INFO - gpu: 0
    2021-11-19 00:49:54,457 - INFO - data_path: /data/SC_Dataset
    2021-11-19 00:49:54,457 - INFO - ckp_path: ./checkpoints_debug
    2021-11-19 00:49:54,458 - INFO - visualization_path: visualization
    2021-11-19 00:49:54,458 - INFO - model_type: MMNet
    2021-11-19 00:49:54,459 - INFO - ckp_name: assets/model/mmnet_fcnresnet101_spair.pth
    2021-11-19 00:49:54,459 - INFO - log_path: ./logs/
    2021-11-19 00:49:54,460 - INFO - resize: 224,320
    2021-11-19 00:49:54,460 - INFO - max_kps_num: 50
    2021-11-19 00:49:54,461 - INFO - split_type: test
    2021-11-19 00:49:54,461 - INFO - alpha: 0.05
    2021-11-19 00:49:54,462 - INFO - resolution: 2
    2021-11-19 00:49:54,462 - INFO - Options all listed.------------------
    2021-11-19 00:49:54,463 - INFO - ckp file: assets/model/mmnet_fcnresnet101_spair.pth
    2021-11-19 00:50:04,950 - INFO - [    0/12234]: 	 [Pair PCK: 0.333]	[Average: 0.333] aeroplane
    2021-11-19 00:50:04,953 - INFO - [    1/12234]: 	 [Pair PCK: 0.100]	[Average: 0.217] aeroplane
    2021-11-19 00:50:04,956 - INFO - [    2/12234]: 	 [Pair PCK: 0.308]	[Average: 0.247] aeroplane
    2021-11-19 00:50:04,958 - INFO - [    3/12234]: 	 [Pair PCK: 0.364]	[Average: 0.276] aeroplane
    2021-11-19 00:50:04,960 - INFO - [    4/12234]: 	 [Pair PCK: 0.000]	[Average: 0.221] aeroplane
    2021-11-19 00:50:05,575 - INFO - [    5/12234]: 	 [Pair PCK: 0.200]	[Average: 0.217] aeroplane
    2021-11-19 00:50:05,577 - INFO - [    6/12234]: 	 [Pair PCK: 0.250]	[Average: 0.222] aeroplane
    2021-11-19 00:50:05,580 - INFO - [    7/12234]: 	 [Pair PCK: 0.308]	[Average: 0.233] aeroplane
    2021-11-19 00:50:05,583 - INFO - [    8/12234]: 	 [Pair PCK: 0.182]	[Average: 0.227] aeroplane
    2021-11-19 00:50:05,585 - INFO - [    9/12234]: 	 [Pair PCK: 0.636]	[Average: 0.268] aeroplane
    2021-11-19 00:50:06,153 - INFO - [   10/12234]: 	 [Pair PCK: 0.667]	[Average: 0.304] aeroplane
    2021-11-19 00:50:06,156 - INFO - [   11/12234]: 	 [Pair PCK: 0.385]	[Average: 0.311] aeroplane
    2021-11-19 00:50:06,158 - INFO - [   12/12234]: 	 [Pair PCK: 0.455]	[Average: 0.322] aeroplane
    2021-11-19 00:50:06,160 - INFO - [   13/12234]: 	 [Pair PCK: 0.250]	[Average: 0.317] aeroplane
    2021-11-19 00:50:06,163 - INFO - [   14/12234]: 	 [Pair PCK: 0.615]	[Average: 0.337] aeroplane
    2021-11-19 00:50:06,731 - INFO - [   15/12234]: 	 [Pair PCK: 0.000]	[Average: 0.316] aeroplane
    ...
    2021-11-19 01:13:47,264 - INFO - [12216/12234]: 	 [Pair PCK: 0.222]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,265 - INFO - [12217/12234]: 	 [Pair PCK: 0.200]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,266 - INFO - [12218/12234]: 	 [Pair PCK: 0.250]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,268 - INFO - [12219/12234]: 	 [Pair PCK: 0.222]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,837 - INFO - [12220/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,838 - INFO - [12221/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,848 - INFO - [12222/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,850 - INFO - [12223/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,853 - INFO - [12224/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,422 - INFO - [12225/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,424 - INFO - [12226/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,425 - INFO - [12227/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,427 - INFO - [12228/12234]: 	 [Pair PCK: 0.333]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,429 - INFO - [12229/12234]: 	 [Pair PCK: 0.222]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,896 - INFO - [12230/12234]: 	 [Pair PCK: 0.333]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,899 - INFO - [12231/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,899 - INFO - [12232/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,901 - INFO - [12233/12234]: 	 [Pair PCK: 0.111]	[Average: 0.333] tvmonitor
    
    opened by tjyuyao 1
Releases(v0.1.0)
Owner
joey zhao
Master in Computer Sciences and Technology at Fudan University
joey zhao
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

61.4k Jan 04, 2023
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
Text mining project; Using distilBERT to predict authors in the classification task authorship attribution.

DistilBERT-Text-mining-authorship-attribution Dataset used: https://www.kaggle.com/azimulh/tweets-data-for-authorship-attribution-modelling/version/2

1 Jan 13, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

David Futschik 112 Jan 04, 2023
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Vaibhav Rajput 2 Jun 21, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
MohammadReza Sharifi 27 Dec 13, 2022
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022