TUPÃ was developed to analyze electric field properties in molecular simulations

Related tags

Deep Learningtupa
Overview

Twitter Follow

TUPÃ: Electric field analyses for molecular simulations

alt text

What is TUPÃ?

TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine to calculate electric fields at any point inside the simulation box throughout MD trajectories. TUPÃ also includes a PyMOL plugin to visualize electric field vectors together with molecules.

Required packages:

  • MDAnalysis >= 1.0.0
  • Python >= 3.x
  • Numpy >= 1.2.x

Installation instructions

First, make sure you have all required packages installed. For MDAnalysis installation procedures, click here.

After, just clone this repository into a folder of your choice:

git clone https://github.com/mdpoleto/tupa.git

To use TUPÃ easily, copy the directory pathway to TUPÃ folder and include an alias in your ~/.bashrc:

alias tupa="python /path/to/the/cloned/repository/TUPA.py"

To install the PyMOL plugin, open PyMOL > Plugin Manager and click on "Install New Plugin" tab. Load the TUPÃ plugin and use it via command-line within PyMOL. To usage instructions, read our FAQ.

TUPÃ Usage

TUPÃ calculations are based on parameters that are provided via a configuration file, which can be obtained via the command:

tupa -template config.conf

The configuration file usually contains:

[Environment Selection]
sele_environment      = (string)             [default: None]

[Probe Selection]
mode                = (string)             [default: None]
selatom             = (string)             [default: None]
selbond1            = (string)             [default: None]
selbond2            = (string)             [default: None]
targetcoordinate    = [float,float,float]  [default: None]
remove_self         = (True/False)         [default: False]
remove_cutoff       = (float)              [default: 1 A ]

[Solvent]
include_solvent     = (True/False)         [default: False]
solvent_cutoff      = (float)              [default: 10 A]
solvent_selection   = (string)             [default: None]

[Time]
dt                  = (integer)            [default: 1]

A complete explanation of each option in the configuration file is available via the command:

tupa -h

TUPÃ has 3 calculations MODES:

  • In ATOM mode, the coordinate of one atom will be tracked throughout the trajectory to serve as target point. If more than 1 atom is provided in the selection, the center of geometry (COG) is used as target position. An example is provided HERE.

  • In BOND mode, the midpoint between 2 atoms will be tracked throughout the trajectory to serve as target point. In this mode, the bond axis is used to calculate electric field alignment. By default, the bond axis is define as selbond1 ---> selbond2. An example is provided HERE.

  • In COORDINATE mode, a list of [X,Y,Z] coordinates will serve as target point in all trajectory frames. An example is provided HERE.

IMPORTANT:

  • All selections must be compatible with MDAnalysis syntax.
  • TUPÃ does not handle PBC images yet! Trajectories MUST be re-imaged before running TUPÃ.
  • Solvent molecules in PBC images are selected if within the cutoff. This is achieved by applying the around selection feature in MDAnalysis.
  • TUPÃ does not account for Particle Mesh Ewald (PME) electrostatic contributions! To minimize such effects, center your target as well as possible.
  • If using COORDINATE mode, make sure your trajectory has no translations and rotations. Our code does not account for rotations and translations.

TUPÃ PyMOL Plugin (pyTUPÃ)

To install pyTUPÃ plugin in PyMOL, click on Plugin > Plugin Manager and then "Install New Plugin" tab. Choose the pyTUPÃ.py file and click Install.

Our plugin has 3 functions that can be called via command line within PyMOL:

  • efield_point: create a vector at a given atom or set of coordinates.
efield_point segid LIG and name O1, efield=[-117.9143, 150.3252, 86.5553], scale=0.01, color="red", name="efield_OG"
  • efield_bond: create a vector midway between 2 selected atoms.
efield_point resname LIG and name O1, resname LIG and name C1, efield=[-94.2675, -9.6722, 58.2067], scale=0.01, color="blue", name="efield_OG-C1"
  • draw_bond_axis: create a vector representing the axis between 2 atoms.
draw_bond_axis resname LIG and name O1, resname LIG and name C1, gap=0.5, color="gray60", name="axis_OG-C1"

Citing TUPÃ

If you use TUPÃ in a scientific publication, we would appreciate citations to the following paper:

Marcelo D. Polêto, Justin A. Lemkul. TUPÃ: Electric field analysis for molecular simulations, 2022.

Bibtex entry:

@article{TUPÃ2022,
    author = {Pol\^{e}to, M D and Lemkul, J A},
    title = "{TUPÃ : Electric field analyses for molecular simulations}",
    journal = {},
    year = {},
    month = {},
    issn = {},
    doi = {},
    url = {},
    note = {},
    eprint = {},
}

Why TUPÃ?

In the Brazilian folklore, Tupã is considered a "manifestation of God in the form of thunder". To know more, refer to this.

Contact information

E-mail: [email protected] / [email protected]

You might also like...
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

MolRep: A Deep Representation Learning Library for Molecular Property Prediction
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Code for the paper
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Comments
  • 1.4.0 branch

    1.4.0 branch

    TUPÃ update (Aug 03 2022):

    • Empty environment selection now issues an error.
      
    • Empty probe selection now issues an error.
      
    • Improved Help/Usage 
      
    • Configuration file examples are based on common syntax
      
    opened by mdpoleto 0
  • 1.3.0 branch

    1.3.0 branch

    TUPÃ update (Jun 21 2022):

    • -dumptime now accepts multiple entries
    • Add average and standard deviation values at the end of ElecField_proj_onto_bond.dat and ElecField_alignment.dat
    • Add Angle column in ElecField_alignment.dat with the average angle between Efield(t) and bond axis.
    • Fix documentation issues/typos.
    opened by mdpoleto 0
Releases(v1.4.0)
  • v1.4.0(Aug 3, 2022)

    TUPÃ update (Aug 03 2022):

    • Empty environment selection now issues an error.
      
    • Empty probe selection now issues an error.
      
    • Improved Help/Usage 
      
    • Configuration file examples are based on common syntax
      
    Source code(tar.gz)
    Source code(zip)
  • v1.3.0(Jun 22, 2022)

    TUPÃ update (Jun 21 2022):

    • -dumptime now accepts multiple entries
    • Add average and standard deviation values at the end of ElecField_proj_onto_bond.dat and ElecField_alignment.dat
    • Add Angle column in ElecField_alignment.dat with the average angle between Efield(t) and bond axis.
    • Fix documentation issues/typos.
    Source code(tar.gz)
    Source code(zip)
  • v1.2.0(Apr 18, 2022)

    TUPÃ update (Apr 18 2022):

    • Make -dump now writes the entire system instead of just the environment selection.
    • Add field average and standard deviation values at the end of ElecField.dat
    • Fix documentation issues/typos.
    • Update paper metadata
    Source code(tar.gz)
    Source code(zip)
  • v1.1.0(Mar 23, 2022)

    TUPÃ update (Mar 22 2022):

    • Inclusion of LIST mode: TUPÃ reads a file containing XYZ coordinates that will be used as the probe position. Useful for binding sites or other pockets.
    • Fix documentation issues/typos.

    pyTUPÃ update (Mar 22 2022):

    • Support for a 3D representation of electric field standard deviation as a truncated cone that involves the electric field arrow.
    Source code(tar.gz)
    Source code(zip)
  • v1.0.0(Feb 9, 2022)

    TUPÃ first release (Feb 13 2022):

    • Calculation modes available: ATOM, BOND, COORDINATE
    • Support for triclinic simulation boxes only.
    • PBC support is limited to triclinic boxes. Future versions are expected to handle PBC corrections.
    • Removal of "self-contributions" are available to the COORDINATE mode only.
    • Users can dump a specific frame as a .pdb file. Futures versions are expected to allow the extraction of the environment set coordinates.
    • Residue contributions are calculated.

    pyTUPÃ first release (Feb 13 2022):

    • Support for draw_bond, efield_bond and efield_point.
    • EField vectors can be scaled up/down
    Source code(tar.gz)
    Source code(zip)
Owner
Marcelo D. Polêto
Marcelo D. Polêto
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
The code uses SegFormer for Semantic Segmentation on Drone Dataset.

SegFormer_Segmentation The code uses SegFormer for Semantic Segmentation on Drone Dataset. The details for the SegFormer can be obtained from the foll

Dr. Sander Ali Khowaja 1 May 08, 2022
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving.

MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving. It is a comprehensive framework for research purpose that integrates popular MWP benchmark datasets and typical deep learnin

119 Jan 04, 2023
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network

Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution

An Tao 2 Oct 18, 2022
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022