TUPÃ was developed to analyze electric field properties in molecular simulations

Related tags

Deep Learningtupa
Overview

Twitter Follow

TUPÃ: Electric field analyses for molecular simulations

alt text

What is TUPÃ?

TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine to calculate electric fields at any point inside the simulation box throughout MD trajectories. TUPÃ also includes a PyMOL plugin to visualize electric field vectors together with molecules.

Required packages:

  • MDAnalysis >= 1.0.0
  • Python >= 3.x
  • Numpy >= 1.2.x

Installation instructions

First, make sure you have all required packages installed. For MDAnalysis installation procedures, click here.

After, just clone this repository into a folder of your choice:

git clone https://github.com/mdpoleto/tupa.git

To use TUPÃ easily, copy the directory pathway to TUPÃ folder and include an alias in your ~/.bashrc:

alias tupa="python /path/to/the/cloned/repository/TUPA.py"

To install the PyMOL plugin, open PyMOL > Plugin Manager and click on "Install New Plugin" tab. Load the TUPÃ plugin and use it via command-line within PyMOL. To usage instructions, read our FAQ.

TUPÃ Usage

TUPÃ calculations are based on parameters that are provided via a configuration file, which can be obtained via the command:

tupa -template config.conf

The configuration file usually contains:

[Environment Selection]
sele_environment      = (string)             [default: None]

[Probe Selection]
mode                = (string)             [default: None]
selatom             = (string)             [default: None]
selbond1            = (string)             [default: None]
selbond2            = (string)             [default: None]
targetcoordinate    = [float,float,float]  [default: None]
remove_self         = (True/False)         [default: False]
remove_cutoff       = (float)              [default: 1 A ]

[Solvent]
include_solvent     = (True/False)         [default: False]
solvent_cutoff      = (float)              [default: 10 A]
solvent_selection   = (string)             [default: None]

[Time]
dt                  = (integer)            [default: 1]

A complete explanation of each option in the configuration file is available via the command:

tupa -h

TUPÃ has 3 calculations MODES:

  • In ATOM mode, the coordinate of one atom will be tracked throughout the trajectory to serve as target point. If more than 1 atom is provided in the selection, the center of geometry (COG) is used as target position. An example is provided HERE.

  • In BOND mode, the midpoint between 2 atoms will be tracked throughout the trajectory to serve as target point. In this mode, the bond axis is used to calculate electric field alignment. By default, the bond axis is define as selbond1 ---> selbond2. An example is provided HERE.

  • In COORDINATE mode, a list of [X,Y,Z] coordinates will serve as target point in all trajectory frames. An example is provided HERE.

IMPORTANT:

  • All selections must be compatible with MDAnalysis syntax.
  • TUPÃ does not handle PBC images yet! Trajectories MUST be re-imaged before running TUPÃ.
  • Solvent molecules in PBC images are selected if within the cutoff. This is achieved by applying the around selection feature in MDAnalysis.
  • TUPÃ does not account for Particle Mesh Ewald (PME) electrostatic contributions! To minimize such effects, center your target as well as possible.
  • If using COORDINATE mode, make sure your trajectory has no translations and rotations. Our code does not account for rotations and translations.

TUPÃ PyMOL Plugin (pyTUPÃ)

To install pyTUPÃ plugin in PyMOL, click on Plugin > Plugin Manager and then "Install New Plugin" tab. Choose the pyTUPÃ.py file and click Install.

Our plugin has 3 functions that can be called via command line within PyMOL:

  • efield_point: create a vector at a given atom or set of coordinates.
efield_point segid LIG and name O1, efield=[-117.9143, 150.3252, 86.5553], scale=0.01, color="red", name="efield_OG"
  • efield_bond: create a vector midway between 2 selected atoms.
efield_point resname LIG and name O1, resname LIG and name C1, efield=[-94.2675, -9.6722, 58.2067], scale=0.01, color="blue", name="efield_OG-C1"
  • draw_bond_axis: create a vector representing the axis between 2 atoms.
draw_bond_axis resname LIG and name O1, resname LIG and name C1, gap=0.5, color="gray60", name="axis_OG-C1"

Citing TUPÃ

If you use TUPÃ in a scientific publication, we would appreciate citations to the following paper:

Marcelo D. Polêto, Justin A. Lemkul. TUPÃ: Electric field analysis for molecular simulations, 2022.

Bibtex entry:

@article{TUPÃ2022,
    author = {Pol\^{e}to, M D and Lemkul, J A},
    title = "{TUPÃ : Electric field analyses for molecular simulations}",
    journal = {},
    year = {},
    month = {},
    issn = {},
    doi = {},
    url = {},
    note = {},
    eprint = {},
}

Why TUPÃ?

In the Brazilian folklore, Tupã is considered a "manifestation of God in the form of thunder". To know more, refer to this.

Contact information

E-mail: [email protected] / [email protected]

You might also like...
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

MolRep: A Deep Representation Learning Library for Molecular Property Prediction
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Code for the paper
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Comments
  • 1.4.0 branch

    1.4.0 branch

    TUPÃ update (Aug 03 2022):

    • Empty environment selection now issues an error.
      
    • Empty probe selection now issues an error.
      
    • Improved Help/Usage 
      
    • Configuration file examples are based on common syntax
      
    opened by mdpoleto 0
  • 1.3.0 branch

    1.3.0 branch

    TUPÃ update (Jun 21 2022):

    • -dumptime now accepts multiple entries
    • Add average and standard deviation values at the end of ElecField_proj_onto_bond.dat and ElecField_alignment.dat
    • Add Angle column in ElecField_alignment.dat with the average angle between Efield(t) and bond axis.
    • Fix documentation issues/typos.
    opened by mdpoleto 0
Releases(v1.4.0)
  • v1.4.0(Aug 3, 2022)

    TUPÃ update (Aug 03 2022):

    • Empty environment selection now issues an error.
      
    • Empty probe selection now issues an error.
      
    • Improved Help/Usage 
      
    • Configuration file examples are based on common syntax
      
    Source code(tar.gz)
    Source code(zip)
  • v1.3.0(Jun 22, 2022)

    TUPÃ update (Jun 21 2022):

    • -dumptime now accepts multiple entries
    • Add average and standard deviation values at the end of ElecField_proj_onto_bond.dat and ElecField_alignment.dat
    • Add Angle column in ElecField_alignment.dat with the average angle between Efield(t) and bond axis.
    • Fix documentation issues/typos.
    Source code(tar.gz)
    Source code(zip)
  • v1.2.0(Apr 18, 2022)

    TUPÃ update (Apr 18 2022):

    • Make -dump now writes the entire system instead of just the environment selection.
    • Add field average and standard deviation values at the end of ElecField.dat
    • Fix documentation issues/typos.
    • Update paper metadata
    Source code(tar.gz)
    Source code(zip)
  • v1.1.0(Mar 23, 2022)

    TUPÃ update (Mar 22 2022):

    • Inclusion of LIST mode: TUPÃ reads a file containing XYZ coordinates that will be used as the probe position. Useful for binding sites or other pockets.
    • Fix documentation issues/typos.

    pyTUPÃ update (Mar 22 2022):

    • Support for a 3D representation of electric field standard deviation as a truncated cone that involves the electric field arrow.
    Source code(tar.gz)
    Source code(zip)
  • v1.0.0(Feb 9, 2022)

    TUPÃ first release (Feb 13 2022):

    • Calculation modes available: ATOM, BOND, COORDINATE
    • Support for triclinic simulation boxes only.
    • PBC support is limited to triclinic boxes. Future versions are expected to handle PBC corrections.
    • Removal of "self-contributions" are available to the COORDINATE mode only.
    • Users can dump a specific frame as a .pdb file. Futures versions are expected to allow the extraction of the environment set coordinates.
    • Residue contributions are calculated.

    pyTUPÃ first release (Feb 13 2022):

    • Support for draw_bond, efield_bond and efield_point.
    • EField vectors can be scaled up/down
    Source code(tar.gz)
    Source code(zip)
Owner
Marcelo D. Polêto
Marcelo D. Polêto
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Yuxin Chen 148 Dec 16, 2022
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022
PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

Karush Suri 2 Sep 14, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023