Prototypical Networks for Few shot Learning in PyTorch

Overview

Prototypical Networks for Few shot Learning in PyTorch

Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code) in PyTorch.

Prototypical Networks

As shown in the reference paper Prototypical Networks are trained to embed samples features in a vectorial space, in particular, at each episode (iteration), a number of samples for a subset of classes are selected and sent through the model, for each subset of class c a number of samples' features (n_support) are used to guess the prototype (their barycentre coordinates in the vectorial space) for that class, so then the distances between the remaining n_query samples and their class barycentre can be minimized.

Prototypical Networks

T-SNE

After training, you can compute the t-SNE for the features generated by the model (not done in this repo, more infos about t-SNE here), this is a sample as shown in the paper.

Reference Paper t-SNE

Omniglot Dataset

Kudos to @ludc for his contribute: https://github.com/pytorch/vision/pull/46. We will use the official dataset when it will be added to torchvision if it doesn't imply big changes to the code.

Dataset splits

We implemented the Vynials splitting method as in [Matching Networks for One Shot Learning]. That sould be the same method used in the paper (in fact I download the split files from the "offical" repo). We then apply the same rotations there described. In this way we should be able to compare results obtained by running this code with results described in the reference paper.

Prototypical Batch Sampler

As described in its PyDoc, this class is used to generate the indexes of each batch for a prototypical training algorithm.

In particular, the object is instantiated by passing the list of the labels for the dataset, the sampler infers then the total number of classes and creates a set of indexes for each class ni the dataset. At each episode the sampler selects n_classes random classes and returns a number (n_support + n_query) of samples indexes for each one of the selected classes.

Prototypical Loss

Compute the loss as in the cited paper, mostly inspired by this code by one of its authors.

In prototypical_loss.py both loss function and loss class à la PyTorch are implemented.

The function takes in input the batch input from the model, samples' ground truths and the number n_suppport of samples to be used as support samples. Episode classes get infered from the target list, n_support samples get randomly extracted for each class, their class barycentres get computed, as well as the distances of each remaining samples' embedding from each class barycentre and the probability of each sample of belonging to each episode class get finmally computed; then the loss is then computed from the wrong predictions probabilities (for the query samples) as usual in classification problems.

Training

Please note that the training code is here just for demonstration purposes.

To train the Protonet on this task, cd into this repo's src root folder and execute:

$ python train.py

The script takes the following command line options:

  • dataset_root: the root directory where tha dataset is stored, default to '../dataset'

  • nepochs: number of epochs to train for, default to 100

  • learning_rate: learning rate for the model, default to 0.001

  • lr_scheduler_step: StepLR learning rate scheduler step, default to 20

  • lr_scheduler_gamma: StepLR learning rate scheduler gamma, default to 0.5

  • iterations: number of episodes per epoch. default to 100

  • classes_per_it_tr: number of random classes per episode for training. default to 60

  • num_support_tr: number of samples per class to use as support for training. default to 5

  • num_query_tr: nnumber of samples per class to use as query for training. default to 5

  • classes_per_it_val: number of random classes per episode for validation. default to 5

  • num_support_val: number of samples per class to use as support for validation. default to 5

  • num_query_val: number of samples per class to use as query for validation. default to 15

  • manual_seed: input for the manual seeds initializations, default to 7

  • cuda: enables cuda (store True)

Running the command without arguments will train the models with the default hyperparamters values (producing results shown above).

Performances

We are trying to reproduce the reference paper performaces, we'll update here our best results.

Model 1-shot (5-way Acc.) 5-shot (5-way Acc.) 1 -shot (20-way Acc.) 5-shot (20-way Acc.)
Reference Paper 98.8% 99.7% 96.0% 98.9%
This repo 98.5%** 99.6%* 95.1%° 98.6%°°

* achieved using default parameters (using --cuda option)

** achieved running python train.py --cuda -nsTr 1 -nsVa 1

° achieved running python train.py --cuda -nsTr 1 -nsVa 1 -cVa 20

°° achieved running python train.py --cuda -nsTr 5 -nsVa 5 -cVa 20

Helpful links

.bib citation

cite the paper as follows (copied-pasted it from arxiv for you):

@article{DBLP:journals/corr/SnellSZ17,
  author    = {Jake Snell and
               Kevin Swersky and
               Richard S. Zemel},
  title     = {Prototypical Networks for Few-shot Learning},
  journal   = {CoRR},
  volume    = {abs/1703.05175},
  year      = {2017},
  url       = {http://arxiv.org/abs/1703.05175},
  archivePrefix = {arXiv},
  eprint    = {1703.05175},
  timestamp = {Wed, 07 Jun 2017 14:41:38 +0200},
  biburl    = {http://dblp.org/rec/bib/journals/corr/SnellSZ17},
  bibsource = {dblp computer science bibliography, http://dblp.org}
}

License

This project is licensed under the MIT License

Copyright (c) 2018 Daniele E. Ciriello, Orobix Srl (www.orobix.com).

Owner
Orobix
Orobix
Anime Face Detector using mmdet and mmpose

Anime Face Detector This is an anime face detector using mmdetection and mmpose. (To avoid copyright issues, I use generated images by the TADNE model

198 Jan 07, 2023
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具 2022.2.8 添加、修改内容 增加备份文件fuzz规则 修改备份文件大小判断

VMsec 220 Jan 05, 2023
ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Jie Hu 182 Dec 19, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
Fast and Simple Neural Vocoder, the Multiband RNNMS

Multiband RNN_MS Fast and Simple vocoder, Multiband RNN_MS. Demo Quick training How to Use System Details Results References Demo ToDO: Link super gre

tarepan 5 Jan 11, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 01, 2023
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
A curated list of long-tailed recognition resources.

Awesome Long-tailed Recognition A curated list of long-tailed recognition and related resources. Please feel free to pull requests or open an issue to

Zhiwei ZHANG 542 Jan 01, 2023