Unadversarial Examples: Designing Objects for Robust Vision

Overview

Unadversarial Examples: Designing Objects for Robust Vision

This repository contains the code necessary to replicate the major results of our paper:

Unadversarial Examples: Designing Objects for Robust Vision
Hadi Salman*, Andrew Ilyas*, Logan Engstrom*, Sai Vemprala, Aleksander Madry, Ashish Kapoor
Paper
Blogpost (MSR)
Blogpost (Gradient Science)

@article{salman2020unadversarial,
  title={Unadversarial Examples: Designing Objects for Robust Vision},
  author={Hadi Salman and Andrew Ilyas and Logan Engstrom and Sai Vemprala and Aleksander Madry and Ashish Kapoor},
  journal={arXiv preprint arXiv:2012.12235},
  year={2020}
}

Getting started

The following steps will get you set up with the required packages (additional packages are required for the 3D textures setting, described below):

  1. Clone our repo: git clone https://github.com/microsoft/unadversarial.git

  2. Install dependencies:

    conda create -n unadv python=3.7
    conda activate unadv
    pip install -r requirements.txt
    

Generating unadversarial examples for CIFAR10

Here we show a quick example how to generate unadversarial examples for CIFAR-10. Similar procedure can be used with ImageNet. The entry point of our code is main.py (see the file for a full description of arguments).

1- Download a pretrained CIFAR10 models, e.g.,

mkdir pretrained-models & 
wget -O pretrained-models/cifar_resnet50.ckpt "https://www.dropbox.com/s/yhpp4yws7sgi6lj/cifar_nat.pt?raw=1"

2- Run the following script

python -m src.main \
      --out-dir OUT_DIR \
      --exp-name demo \
      --dataset cifar \
      --data /tmp \
      --arch resnet50 \
      --model-path pretrained-models/cifar_resnet50.ckpt \
      --patch-size 10 \
      --patch-lr 0.001 \
      --training-mode booster \
      --epochs 30 \
      --adv-train 0

You can see the trained patches images in outdir/demo/save/ as training evolves.

3- Now you can evaluate the pretrained model on a boosted CIFAR10-C dataset (trained patch overlaid on CIFAR-10, then corruptions are added). Simply run

python -m src.evaluate_corruptions \
      --out-dir OUT_DIR \
      --exp-name demo \
      --model-path OUT_DIR/demo/checkpoint.pt.best \
      --args-from-store data,dataset,arch,patch_size

This will evaluate the pretrained model on various corruptions and display the results in the terminal.

4- That's it!

Generating 3D unadversarial textures

The following steps were tested on these configurations:

  • Ubuntu 16.04, 8 x NVIDIA 1080Ti/2080Ti, 2x10-core Intel CPUs (w/ HyperThreading, 40 virtual cores), CUDA 10.2
  • Ubuntu 18.04, 2 x NVIDIA K80, 1x12-core Intel CPU, CUDA 10.2

1- Choose a dataset to use as background images; we used ImageNet in our paper, for which you will need to have ImageNet in PyTorch ImageFolder format somewhere on your machine. If you don't have that, you can just use solid colors as the backgrounds (though the results might not match the paper).

2- Install the requirements: you will need a machine with CUDA 10.2 installed (this process might work with other versions of CUDA but we only tested 10.2), as well as docker, nvidia-docker, and the requirements mentioned earlier in the README.

3- Go to the docker/ folder and run docker build --tag TAG ., changing TAG to your preferred name for your docker instance. This will build a docker instance with all the requirements installed!

4- Open launch.py and edit the IMAGENET_TRAIN and IMAGENET_VAL variables to point to the ImageNet dataset, if it's installed and you want to use it. Either way, change TAG on the last line of the file with whatever you named your docker instance in the last step.

5- Alter the parameters in src/configs/config.json according to your setup; the only things we would recommend altering are num_texcoord_renderers (this should not exceed the number of CPU cores you have available), exp_name (the name of the output folder, which will be created inside OUT_DIR from the previous step), and dataset (if you are using ImageNet, you can leave this be, otherwise change it to solids to use solid colors as the backgrounds).

6- From inside the docker folder, run python launch.py [--with-imagenet] --out-dir OUT_DIR --gpus GPUS from the same folder. The --with-imagenet argument should only be provided if you followed step four. The OUT_DIR argument should point to where you want the resulting models/output saved, and the GPUS argument should be a comma-separated list of GPU IDs that you would like to run the job on.

7- This process should open a new terminal (inside your docker instance). In this terminal, run GPU_MODE=0 bash run_imagenet.sh [bus|warplane|ship|truck|car] /src/configs/config.json /out

8- Your 3D unadversarial texture should now be generating! Output, including example renderings, the texture itself, and the model checkpoint will be saved to $(OUT_DIR)/$(exp_name).

An example texture that you would get for the warplane is

Simulating 3D Unadversarial Objects in AirSim

Coming soon!

Environments, 3D models, along with python API for controlling these objects and running online object recognition inside Microsoft's AirSim high-fidelity simulator.

Maintainers

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022

Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any

yueliu1999 109 Dec 23, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
๐ŸŒพ PASTIS ๐ŸŒพ Panoptic Agricultural Satellite TIme Series

๐ŸŒพ PASTIS ๐ŸŒพ Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network โ €โ € A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
๐Ÿค– Project template for your next awesome AI project. ๐Ÿฆพ

๐Ÿค– AI Awesome Project Template ๐Ÿ‘‹ Template author You may want to adjust badge links in a README.md file. ๐Ÿ’Ž Installation with pip Installation is as

Wiktor ลazarski 18 Nov 23, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022