FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

Overview

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT

Preparation

  • For instructions on generating data, please go to the folder of the corresponding dataset. For FEMNIST, please refer to femnist.

  • NVIDIA-Docker is required.

  • NVIDIA CUDA version 10.1 and higher is required.

How to run FedGS

Build a docker image

Enter the scripts folder and build a docker image named fedgs.

sudo docker build -f build-env.dockerfile -t fedgs .

Modify /home/lizh/fedgs to your actual project path in scripts/run.sh. Then run scripts/run.sh, which will create a container named fedgs.0 if CONTAINER_RANK is set to 0 and starts the task.

chmod a+x run.sh && ./run.sh

The output logs and models will be stored in a logs folder created automatically. For example, outputs of the FEMNIST task with container rank 0 will be stored in logs/femnist/0/.

Hyperparameters

We categorize hyperparameters into default settings and custom settings, and we will introduce them separately.

Default Hyperparameters

These hyperparameters are included in utils/args.py. We list them in the table below (except for custom hyperparameters), but in general, we do not need to pay attention to them.

Variable Name Default Value Optional Values Description
--seed 0 integer Seed for client selection and batch splitting.
--metrics-name "metrics" string Name for metrics file.
--metrics-dir "metrics" string Folder name for metrics files.
--log-dir "logs" string Folder name for log files.
--use-val-set None None Set this option to use the validation set, otherwise the test set is used. (NOT TESTED)

Custom Hyperparameters

These hyperparameters are included in scripts/run.sh. We list them below.

Environment Variable Default Value Description
CONTAINER_RANK 0 This identify the container (e.g., fedgs.0) and log files (e.g., logs/femnist/0/output.0).
BATCH_SIZE 32 Number of training samples in each batch.
LEARNING_RATE 0.01 Learning rate for local optimizers.
NUM_GROUPS 10 Number of groups.
CLIENTS_PER_GROUP 10 Number of clients selected in each group.
SAMPLER gbp-cs Sampler to be used, can be random, brute, bayesian, probability, ga and gbp-cs.
NUM_SYNCS 50 Number of internal synchronizations in each round.
NUM_ROUNDS 500 Total rounds of external synchronizations.
DATASET femnist Dataset to be used, only FEMNIST is supported currently.
MODEL cnn Neural network model to be used.
EVAL_EVERY 1 Interval rounds for model evaluation.
NUM_GPU_AVAILABLE 2 Number of GPUs available.
NUM_GPU_BEGIN 0 Index of the first available GPU.
IMAGE_NAME fedgs Experimental image to be used.

NOTE: If you wish to specify a GPU device (e.g., GPU0), please set NUM_GPU_AVAILABLE=1 and NUM_GPU_BEGIN=0.

NOTE: This script will mount project files /home/lizh/fedgs from the host into the container /root, so please check carefully whether your file path is correct.

Visualization

The visualizer metrics/visualize.py reads metrics logs (e.g., metrics/metrics_stat_0.csv and metrics/metrics_sys_0.csv) and draws curves of accuracy, loss and so on.

Reference

  • This demo is implemented on LEAF-MX, which is a MXNET implementation of the well-known federated learning framework LEAF.

  • Li, Zonghang, Yihong He, Hongfang Yu, et al. "Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT." Submitted to IEEE Internet of Things Journal, (2021).

  • If you get trouble using this repository, please kindly contact us. Our email: [email protected]

Owner
Lizonghang
Intelligent Communication System, Distributed Machine Learning, Federated Learning
Lizonghang
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).

Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo

Yam Peleg 10 Jan 30, 2022
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 02, 2023
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022