Code for the paper titled "Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks" (NeurIPS 2021 Spotlight).

Related tags

Deep LearningGDWS
Overview

Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks

This repository contains the code and pre-trained models for our paper Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks by Hassan Dbouk and Naresh R. Shanbhag (NeurIPS 2021 Spotlight).

What is GDWS?

Generalized Depthwise-Separable (GDWS) convolutions, as the name suggests, generalize the popular DWS convolutions by allowing for more than one depthwise kernel per input channel as seen below. In our work, we provide efficient and theoretically optimal approximation algorithms that allow us to approximate any standard 2D convolution with a GDWS one. Doing so, we can construct GDWS networks from pre-adversarially trained CNNs in order to dramatically improve the real hardware FPS (measured on an NVIDIA Jetson Xavier) while preserving their robust accuracy. Furthermore, GDWS easily scales to large problem sizes since it operates on pre-trained models and doesn't require any additional training.

Performance Summary

Recent robust pruning works HYDRA and ADMM achieve high compression ratios but either fail to achieve high FPS measured on an NVIDIA Jetson Xavier or compromise significantly on robustness. Furthermore, the overreliance of current robust complexity reduction techniques on adversarial training (AT) increases their training time significantly as shown below. Thus, there is critical need for methods to design deep nets that are both adversarially robust and achieve high throughput when mapped to real hardware. To that end, we:

  • propose GDWS, a novel convolutional structure that can be seamlessly mapped onto off-the-shelf hardware and accelerate pre-trained CNNs significantly while maintaining robust accuracy.
  • show that the error-optimal and complexity-optimal GDWS approximations of any pre-trained standard 2D convolution can be obtained via greedy polynomial time algorithms, thus eliminating the need for any expensive training.
  • apply GDWS to a variety of networks on CIFAR-10, SVHN, and ImageNet to simultaneously achieve higher robustness and higher FPS than existing robust complexity reduction techniques, while incurring no extra training cost.
  • perform thorough experiments using four network architectures on CIFAR-10, SVHN, and Imagenet, and demonstrate the effectiveness of GDWS as it outperforms existing techniques in terms of robustness and throughput (measured in FPS). We also show that model compression is not always the answer when high throughput is required.
  • demonstrate the versatility of GDWS by using it to design efficient CNNs that are robust to union of (l,l2,l1) perturbation models. To the best of our knowledge, this is the first work that proposes efficient and robust networks to the union of norm-bounded perturbation models.

What is in this Repo?

We provide a PyTorch implementation of our GDWS convolutions and our optimal approximation algorithms MEGO and LEGO (algorithms 1 & 2 from our paper). We also provide a modified script from this repo for computing the per-layer weight error vectors alpha (equation (8) from our paper). The code provided can be used to approximate any pre-trained CNN via GDWS convolutions and evaluate its robustness against l-bounded perturbations via eval_robustness.py.

Example

This code was run with the following dependencies, make sure you have the appropriate versions downloaded and installed properly.

python 3.6.9
pytorch 1.0.0
numpy 1.18.1
torchvision 0.2.1
  1. clone the repo: git clone https://github.com/hsndbk4/GDWS.git
  2. make sure the appropriate dataset folders are setup properly (check get_dataloaders in datasets.py)
  3. download a pre-trained pre-activation resnet-18 on CIFAR-10 and its pre-computed weight error vectors alpha from here
  4. place both files in an appropriate folder in the root directory, e.g. outdir_cifar10/preactresnet18

We are now set to run some scripts. First, let us check the natural and robust accuracies of our pre-trained baselines by running the following two commands:

python eval_robustness.py --model preactresnet18 --fname "outdir_cifar10/preactresnet18" --dataset cifar10 --attack none --logfilename a_nat_base.txt
python eval_robustness.py --model preactresnet18 --fname "outdir_cifar10/preactresnet18" --attack-iters 100 --pgd-alpha 1 --dataset cifar10 --epsilon 8 --logfilename a_rob_base.txt

The accuracy numbers will be stored in the appropriate text files in the same folder. Similarly, let us replace the convolutional layers with GDWS ones, using the LEGO algorithm with beta=0.005, and evaluate both the natural and robust accuracies:

python eval_robustness.py --model preactresnet18 --fname "outdir_cifar10/preactresnet18" --dataset cifar10 --attack none --logfilename a_nat_gdws.txt --apply-gdws --alphas-filename alphas.pth --beta 0.005
python eval_robustness.py --model preactresnet18 --fname "outdir_cifar10/preactresnet18" --attack-iters 100 --pgd-alpha 1 --dataset cifar10 --epsilon 8 --logfilename a_rob_gdws.txt --apply-gdws --alphas-filename alphas.pth --beta 0.005

Citation

If you find our work helpful, please consider citing it.

@article{dbouk2021generalized,
  title={Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks},
  author={Dbouk, Hassan and Shanbhag, Naresh R.},
  journal={Advances in Neural Information Processing Systems},
  year={2021}
}

Acknowledgements

This work was supported by the Center for Brain-Inspired Computing (C-BRIC) and the Artificial Intelligence Hardware (AIHW) program funded by the Semiconductor Research Corporation (SRC) and the Defense Advanced Research Projects Agency (DARPA).

Parts of the code in this repository are based on following awesome public repositories:

Owner
Hassan Dbouk
Hassan Dbouk
Code for the paper titled "Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks" (NeurIPS 2021 Spotlight).

Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks This repository contains the code and pre-trained

Hassan Dbouk 7 Dec 05, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
NEO: Non Equilibrium Sampling on the orbit of a deterministic transform

NEO: Non Equilibrium Sampling on the orbit of a deterministic transform Description of the code This repo describes the NEO estimator described in the

0 Dec 01, 2021
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

BMW TechOffice MUNICH 34 Nov 24, 2022
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
Segmentation vgg16 fcn - cityscapes

VGGSegmentation Segmentation vgg16 fcn - cityscapes Priprema skupa skripta prepare_dataset_downsampled.py Iz slika cityscapesa izrezuje haubu automobi

6 Oct 24, 2020
For holding anime-related object classification and detection models

Animesion An end-to-end framework for anime-related object classification, detection, segmentation, and other models. Update: 01/22/2020. Due to time-

Edwin Arkel Rios 72 Nov 30, 2022
Time Dependent DFT in Tamm-Dancoff Approximation

Density Function Theory Program - kspy-tddft(tda) This is an implementation of Time-Dependent Density Functional Theory(TDDFT) using the Tamm-Dancoff

Peter Borthwick 2 Nov 17, 2022
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re

Lincedo Lab 4 Jun 09, 2021
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles

Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace

Patrick.St. 18 Sep 26, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021