Open-AI's DALL-E for large scale training in mesh-tensorflow.

Overview

DALL-E in Mesh-Tensorflow [WIP]

Open-AI's DALL-E in Mesh-Tensorflow.

If this is similarly efficient to GPT-Neo, this repo should be able to train models up to, and larger than, the size of Open-AI's DALL-E (12B params).

No pretrained models... Yet.

Thanks to Ben Wang for the tf vae implementation as well as getting the mtf version working, and Aran Komatsuzaki for help building the mtf VAE and input pipeline.

Setup

git clone https://github.com/EleutherAI/GPTNeo
cd GPTNeo
pip3 install -r requirements.txt

Training Setup

Runs on TPUs, untested on GPUs but should work in theory. The example configs are designed to run on a TPU v3-32 pod.

To set up TPUs, sign up for Google Cloud Platform, and create a storage bucket.

Create your VM through a google shell (https://ssh.cloud.google.com/) with ctpu up --vm-only so that it can connect to your Google bucket and TPUs and setup the repo as above.

VAE pretraining

DALLE needs a pretrained VAE to compress images to tokens. To run the VAE pretraining, adjust the params in configs/vae_example.json to a glob path pointing to a dataset of jpgs, and adjust image size to the appropriate size.

  "dataset": {
    "train_path": "gs://neo-datasets/CIFAR-10-images/train/**/*.jpg",
    "eval_path": "gs://neo-datasets/CIFAR-10-images/test/**/*.jpg",
    "image_size": 32
  }

Once this is all set up, create your TPU, then run:

python train_vae_tf.py --tpu your_tpu_name --model vae_example

The training logs image tensors and loss values, to check progress, you can run:

tensorboard --logdir your_model_dir

Dataset Creation [DALL-E]

Once the VAE is pretrained, you can move on to DALL-E.

Currently we are training on a dummy dataset. A public, large-scale dataset for DALL-E is in the works. In the meantime, to generate some dummy data, run:

python src/data/create_tfrecords.py

This should download CIFAR-10, and generate some random captions to act as text inputs.

Custom datasets should be formatted in a folder, with a jsonl file in the root folder containing caption data and paths to the respective images, as follows:

Folder structure:

        data_folder
            jsonl_file
            folder_1
                img1
                img2
                ...
            folder_2
                img1
                img2
                ...
            ...

jsonl structure:
    {"image_path": folder_1/img1, "caption": "some words"}
    {"image_path": folder_2/img2, "caption": "more words"}
    ...

you can then use the create_paired_dataset function in src/data/create_tfrecords.py to encode the dataset into tfrecords for use in training.

Once the dataset is created, copy it over to your bucket with gsutil:

gsutil cp -r DALLE-tfrecords gs://neo-datasets/

And finally, run training with

python train_dalle.py --tpu your_tpu_name --model dalle_example

Config Guide

VAE:

{
  "model_type": "vae",
  "dataset": {
    "train_path": "gs://neo-datasets/CIFAR-10-images/train/**/*.jpg", # glob path to training images
    "eval_path": "gs://neo-datasets/CIFAR-10-images/test/**/*.jpg", # glob path to eval images
    "image_size": 32 # size of images (all images will be cropped / padded to this size)
  },
  "train_batch_size": 32, 
  "eval_batch_size": 32,
  "predict_batch_size": 32,
  "steps_per_checkpoint": 1000, # how often to save a checkpoint
  "iterations": 500, # number of batches to infeed to the tpu at a time. Must be < steps_per_checkpoint
  "train_steps": 100000, # total training steps
  "eval_steps": 0, # run evaluation for this many steps every steps_per_checkpoint
  "model_path": "gs://neo-models/vae_test2/", # directory in which to save the model
  "mesh_shape": "data:16,model:2", # mapping of processors to named dimensions - see mesh-tensorflow repo for more info
  "layout": "batch_dim:data", # which named dimensions of the model to split across the mesh - see mesh-tensorflow repo for more info
  "num_tokens": 512, # vocab size
  "dim": 512, 
  "hidden_dim": 64, # size of hidden dim
  "n_channels": 3, # number of input channels
  "bf_16": false, # if true, the model is trained with bfloat16 precision
  "lr": 0.001, # learning rate [by default learning rate starts at this value, then decays to 10% of this value over the course of the training]
  "num_layers": 3, # number of blocks in the encoder / decoder
  "train_gumbel_hard": true, # whether to use hard or soft gumbel_softmax
  "eval_gumbel_hard": true
}

DALL-E:

{
  "model_type": "dalle",
  "dataset": {
    "train_path": "gs://neo-datasets/DALLE-tfrecords/*.tfrecords", # glob path to tfrecords data
    "eval_path": "gs://neo-datasets/DALLE-tfrecords/*.tfrecords",
    "image_size": 32 # size of images (all images will be cropped / padded to this size)
  },
  "train_batch_size": 32, # see above
  "eval_batch_size": 32,
  "predict_batch_size": 32,
  "steps_per_checkpoint": 1000,
  "iterations": 500,
  "train_steps": 100000,
  "predict_steps": 0,
  "eval_steps": 0,
  "n_channels": 3,
  "bf_16": false,
  "lr": 0.001,
  "model_path": "gs://neo-models/dalle_test/",
  "mesh_shape": "data:16,model:2",
  "layout": "batch_dim:data",
  "n_embd": 512, # size of embedding dim
  "text_vocab_size": 50258, # vocabulary size of the text tokenizer
  "image_vocab_size": 512, # vocabulary size of the vae - should equal num_tokens above
  "text_seq_len": 256, # length of text inputs (all inputs longer / shorter will be truncated / padded)
  "n_layers": 6, 
  "n_heads": 4, # number of attention heads. For best performance, n_embd / n_heads should equal 128
  "vae_model": "vae_example" # path to or name of vae model config
}
ESP32 python application to read data from a Tilt™ Hydrometer for homebrewing

TitlESP32 ESP32 MicroPython application to read and log data from a Tilt™ Hydrometer. Requirements A board with an ESP32 chip USB cable - USB A / micr

IoBeer 5 Dec 01, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
All course materials for the Zero to Mastery Machine Learning and Data Science course.

Zero to Mastery Machine Learning Welcome! This repository contains all of the code, notebooks, images and other materials related to the Zero to Maste

Daniel Bourke 1.6k Jan 08, 2023
This program automatically runs Python code copied in clipboard

CopyRun This program runs Python code which is copied in clipboard WARNING!! USE AT YOUR OWN RISK! NO GUARANTIES IF ANYTHING GETS BROKEN. DO NOT COPY

vertinski 4 Sep 10, 2021
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
Visualizing Yolov5's layers using GradCam

YOLO-V5 GRADCAM I constantly desired to know to which part of an object the object-detection models pay more attention. So I searched for it, but I di

Pooya Mohammadi Kazaj 200 Jan 01, 2023
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
Establishing Strong Baselines for TripClick Health Retrieval; ECIR 2022

TripClick Baselines with Improved Training Data Welcome 🙌 to the hub-repo of our paper: Establishing Strong Baselines for TripClick Health Retrieval

Sebastian Hofstätter 3 Nov 03, 2022
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Multi-Task Meta-Learning Modification with Stochastic Approximation This repository contains the code for the paper "Multi-Task Meta-Learning Modifica

Andrew 3 Jan 05, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
Corruption Invariant Learning for Re-identification

Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS

Minghui Chen 73 Dec 08, 2022
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023