Corruption Invariant Learning for Re-identification

Overview

Corruption Invariant Learning for Re-identification

The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS 2021 Track on Datasets and Benchmarks), with exhaustive study on corruption invariant learning in single- and cross-modality ReID datasets, including Market-1501-C, CUHK03-C, MSMT17-C, SYSU-MM01-C, RegDB-C.

PWC PWC PWC PWC PWC

Maintenance Plan

The benchmark will be maintained by the authors. We will get constant lectures about the new proposed ReID models and evaluate them under the CIL benchmark settings in time. Besides, we gladly take feedback to the CIL benchmark and welcome any contributions in terms of the new ReID models and corresponding evaluations. Please feel free to contact us, [email protected] .

TODO:

  • other datasets configurations
  • get started tutorial
  • more detailed statistical evaluations
  • checkpoints of the baseline models
  • cross-modality preson Re-ID dataset, CUHK-PEDES
  • other ReID datasets, like VehicleID, VeRi-776, etc.

(Note: codebase from TransReID)

Quick Start

1. Install dependencies

  • python=3.7.0
  • pytorch=1.6.0
  • torchvision=0.7.0
  • timm=0.4.9
  • albumentations=0.5.2
  • imagecorruptions=1.1.2
  • h5py=2.10.0
  • cython=0.29.24
  • yacs=0.1.6

2. Prepare dataset

Download the datasets, Market-1501, CUHK03, MSMT17. Set the root path of the dataset in congigs/Market/resnet_base.yml, DATASETS: ROOT_DIR: ('root'), or set it in scripts/train_market.sh, DATASETS.ROOT_DIR "('root')".

3. Train

Train a CIL model on Market-1501,

sh ./scripts/train_market.sh

4. Test

Test the CIL model on Market-1501,

sh ./scripts/eval_market.sh

Evaluating Corruption Robustness On-the-fly

Corruption Transform

The main code of corruption transform. (See contextual code in ./datasets/make_dataloader.py, line 59)

from imagecorruptions.corruptions import *

corruption_function = [gaussian_noise, shot_noise, impulse_noise, defocus_blur,
    glass_blur, motion_blur, zoom_blur, snow, frost, fog, brightness, contrast,
    elastic_transform, pixelate, jpeg_compression, speckle_noise,
    gaussian_blur, spatter, saturate, rain]
    
class corruption_transform(object):
    def __init__(self, level=0, type='all'):
        self.level = level
        self.type = type

    def __call__(self, img):
        if self.level > 0 and self.level < 6:
            level_idx = self.level
        else:
            level_idx = random.choice(range(1, 6))
        if self.type == 'all':
            corrupt_func = random.choice(corruption_function)
        else:
            func_name_list = [f.__name__ for f in corruption_function]
            corrupt_idx = func_name_list.index(self.type)
            corrupt_func = corruption_function[corrupt_idx]
        c_img = corrupt_func(img.copy(), severity=level_idx)
        img = Image.fromarray(np.uint8(c_img))
        return img

Evaluating corruption robustness can be realized on-the-fly by modifing the transform function uesed in test dataloader. (See details in ./datasets/make_dataloader.py, Line 266)

val_with_corruption_transforms = T.Compose([
    corruption_transform(0),
    T.Resize(cfg.INPUT.SIZE_TEST),
    T.ToTensor(),])

Rain details

We introduce a rain corruption type, which is a common type of weather condition, but it is missed by the original corruption benchmark. (See details in ./datasets/make_dataloader.py, Line 27)

def rain(image, severity=1):
    if severity == 1:
        type = 'drizzle'
    elif severity == 2 or severity == 3:
        type = 'heavy'
    elif severity == 4 or severity == 5:
        type = 'torrential'
    blur_value = 2 + severity
    bright_value = -(0.05 + 0.05 * severity)
    rain = abm.Compose([
        abm.augmentations.transforms.RandomRain(rain_type=type, 
        blur_value=blur_value, brightness_coefficient=1, always_apply=True),
        abm.augmentations.transforms.RandomBrightness(limit=[bright_value, 
        bright_value], always_apply=True)])
    width, height = image.size
    if height <= 60:
        scale_factor = 65.0 / height
        new_size = (int(width * scale_factor), 65)
        image = image.resize(new_size)
    return rain(image=np.array(image))['image']

Baselines

  • Single-modality datasets
                                                                                   
Dataset Method Clean Eval. Corruption Eval.
mINP mAP Rank-1 mINP mAP Rank-1
Market-1501 BoT 59.30 85.06 93.38 0.20 8.42 27.05
AGW 64.03 86.51 94.00 0.35 12.13 31.90
SBS 60.03 88.33 95.90 0.29 11.54 34.13
CIL (ours) 57.90 84.04 93.38 1.76 (0.13) 28.03 (0.45) 55.57 (0.63)
MSMT17 BoT 9.91 48.34 73.53 0.07 5.28 20.20
AGW 12.38 51.84 75.21 0.08 6.53 22.77
SBS 10.26 56.62 82.02 0.05 7.89 28.77
CIL (ours) 12.45 52.40 76.10 0.32 (0.03) 15.33 (0.20) 39.79 (0.45)
CUHK03  AGW   49.97   62.25   64.64   0.46   3.45  5.90 
 CIL (ours)   53.87   65.16   67.29   4.25 (0.39)   16.33 (0.76)   22.96 (1.04) 
  • Cross-modality datasets

Note: For RegDB dataset, Mode A and Mode B represent visible-to-thermal and thermal-to-visible experimental settings, respectively. And for SYSU-MM01 dataset, Mode A and Mode B represent all search and indoor search respectively. Note that we only corrupt RGB (visible) images in the corruption evaluation.

                                                                                                                                                                                                                                                                     
Dataset Method Mode A Mode B
Clean Eval. Corruption Eval. Clean Eval. Corruption Eval.
mINP mAP R-1 mINP mAP R-1 mINP mAP R-1 mINP mAP R-1
SYSU-MM01  AGW   36.17   47.65   47.50   14.73   29.99   34.42   59.74   62.97   54.17   35.39   40.98   33.80 
 CIL (ours)   38.15   47.64   45.51   22.48 (1.65)   35.92 (1.22)   36.95 (0.67)   57.41   60.45   50.98   43.11 (4.19)   48.65 (4.57)   40.73 (5.55) 
RegDB  AGW   54.10   68.82   75.78   32.88   43.09   45.44   52.40   68.15   75.29   6.00   41.37   67.54 
 CIL (ours)   55.68   69.75   74.96   38.66 (0.01)   49.76 (0.03)   52.25 (0.03)   55.50   69.21   74.95   11.94 (0.12)   47.90 (0.01)   67.17 (0.06)

Recent Advance in Person Re-ID

Leaderboard

Market1501-C

(Note: ranked by mAP on corrupted test set)

Method Reference Clean Eval. Corruption Eval.
mINP mAP Rank-1 mINP mAP Rank-1
TransReID Shuting He et al. (2021) 69.29 88.93 95.07 1.98 27.38 53.19
CaceNet Fufu Yu et al. (2020) 70.47 89.82 95.40 0.67 18.24 42.92
LightMBN Fabian Herzog et al. (2021) 73.29 91.54 96.53 0.50 14.84 38.68
PLR-OS Ben Xie et al. (2020) 66.42 88.93 95.19 0.48 14.23 37.56
RRID Hyunjong Park et al. (2019) 67.14 88.43 95.19 0.46 13.45 36.57
Pyramid Feng Zheng et al. (2018) 61.61 87.50 94.86 0.36 12.75 35.72
PCB Yifan Sun et al.(2017) 41.97 82.19 94.15 0.41 12.72 34.93
BDB Zuozhuo Dai et al. (2018) 61.78 85.47 94.63 0.32 10.95 33.79
Aligned++ Hao Luo et al. (2019) 47.31 79.10 91.83 0.32 10.95 31.00
AGW Mang Ye et al. (2020) 65.40 88.10 95.00 0.30 10.80 33.40
MHN Binghui Chen et al. (2019) 55.27 85.33 94.50 0.38 10.69 33.29
LUPerson Dengpan Fu et al. (2020) 68.71 90.32 96.32 0.29 10.37 32.22
OS-Net Kaiyang Zhou et al. (2019) 56.78 85.67 94.69 0.23 10.37 30.94
VPM Yifan Sun et al. (2019) 50.09 81.43 93.79 0.31 10.15 31.17
DG-Net Zhedong Zheng et al. (2019) 61.60 86.09 94.77 0.35 9.96 31.75
ABD-Net Tianlong Chen et al. (2019) 64.72 87.94 94.98 0.26 9.81 29.65
MGN Guanshuo Wang et al.(2018) 60.86 86.51 93.88 0.29 9.72 29.56
F-LGPR Yunpeng Gong et al. (2021) 65.48 88.22 95.37 0.23 9.08 29.35
TDB Rodolfo Quispe et al. (2020) 56.41 85.77 94.30 0.20 8.90 28.56
LGPR Yunpeng Gong et al. (2021) 58.71 86.09 94.51 0.24 8.26 27.72
BoT Hao Luo et al. (2019) 51.00 83.90 94.30 0.10 6.60 26.20

CUHK03-C (detected)

(Note: ranked by mAP on corrupted test set)

Method Reference Clean Eval. Corruption Eval.
mINP mAP Rank-1 mINP mAP Rank-1
CaceNet Fufu Yu et al. (2020) 65.22 75.13 77.64 2.09 10.62 17.04
Pyramid Feng Zheng et al. (2018) 61.41 73.14 79.54 1.10 8.03 10.42
RRID Hyunjong Park et al. (2019) 55.81 67.63 74.99 1.00 7.30 9.66
PLR-OS Ben Xie et al. (2020) 62.72 74.67 78.14 0.89 6.49 10.99
Aligned++ Hao Luo et al. (2019) 47.32 59.76 62.07 0.56 4.87 7.99
MGN Guanshuo Wang et al.(2018) 51.18 62.73 69.14 0.46 4.20 5.44
MHN Binghui Chen et al. (2019) 56.52 66.77 72.21 0.46 3.97 8.27

MSMT17-C (Version 2)

(Note: ranked by mAP on corrupted test set)

Method Reference Clean Eval. Corruption Eval.
mINP mAP Rank-1 mINP mAP Rank-1
OS-Net Kaiyang Zhou et al. (2019) 4.05 40.05 71.86 0.08 7.86 28.51
AGW Mang Ye et al. (2020) 12.38 51.84 75.21 0.08 6.53 22.77
BoT Hao Luo et al. (2019) 9.91 48.34 73.53 0.07 5.28 20.20

Citation

Kindly include a reference to this paper in your publications if it helps your research:

@misc{chen2021benchmarks,
    title={Benchmarks for Corruption Invariant Person Re-identification},
    author={Minghui Chen and Zhiqiang Wang and Feng Zheng},
    year={2021},
    eprint={2111.00880},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Owner
Minghui Chen
Minghui Chen
Starter kit for getting started in the Music Demixing Challenge.

Music Demixing Challenge - Starter Kit 👉 Challenge page This repository is the Music Demixing Challenge Submission template and Starter kit! Clone th

AIcrowd 106 Dec 20, 2022
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
Beancount-mercury - Beancount importer for Mercury Startup Checking

beancount-mercury beancount-mercury provides an Importer for converting CSV expo

Michael Lynch 4 Oct 31, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Predict bus arrival time using VertexAI and Nvidia's Jetson Nano

bus_prediction predict bus arrival time using VertexAI and Nvidia's Jetson Nano imagenet the command for imagenet.py look like this python3 /path/to/i

10 Dec 22, 2022
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022