GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

Overview

If you are using this code in your own project, please cite our paper:

@inproceedings{awiszus2020toadgan,
  title={TOAD-GAN: Coherent Style Level Generation from a Single Example},
  author={Awiszus, Maren and Schubert, Frederik and Rosenhahn, Bodo},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment},
  year={2020}
}

TOAD-GUI

TOAD-GUI is a Framework with which Super Mario Bros. levels can be randomly generated, loaded, saved, edited and played using a graphical user interface. Generation is done with pre-trained TOAD-GAN (Token-based, One-shot, Arbitrary Dimension Generative Adversarial Network). For more information on TOAD-GAN, please refer to the paper (arxiv link) and the Github.

TOAD-GUI_linux_example

This project uses the Mario-AI-Framework by Ahmed Khalifa and includes graphics from the game Super Mario Bros. It is not affiliated with or endorsed by Nintendo. The project was built for research purposes only.

AIIDE 2020

Our paper "TOAD-GAN: Coherent Style Level Generation from a Single Example" was accepted for oral presentation at AIIDE 2020! You can find our video presentation on YouTube.

Our code for TOAD-GUI and TOAD-GAN has been accepted for the AIIDE 2020 Artifact Evaluation Track! It will be recognized in the AIIDE 2020 Program.

Getting Started

This section includes the necessary steps to get TOAD-GUI running on your system.

Python

You will need Python 3 and the packages specified in requirements.txt. We recommend setting up a virtual environment with pip and installing the packages there.

$ pip3 install -r requirements.txt -f "https://download.pytorch.org/whl/torch_stable.html"

Make sure you use the pip3 that belongs to your previously defined virtual environment.

The GUI is made with Tkinter, which from Python 3.7 onwards is installed by default. If you don't have it installed because of an older version, follow the instructions here.

Java

TOAD-GUI uses the Mario-AI-Framework to play the generated levels. For the Framework to run, Java 11 (or higher) needs to be installed.

Running TOAD-GUI

Once all prerequisites are installed, TOAD-GUI can be started by running main.py.

$ python main.py

Make sure you are using the python installation you installed the prerequisites into.

TOAD-GUI

When running TOAD-GUI you can:

  • toad folder Open a Folder containing a Generator (TOAD-GAN)
  • level folder Open a (previously saved) level .txt to view and/or play
  • gear toad Generate a level of the size defined in the entries below
  • save button Save the currently loaded level level to a .txt or .png image file
  • play button Play the currently loaded level

NOTE: When a generator is opened, it will not show any files in the dialog window. That is intended behavior for askdirectory() of tkinter. Just navigate to the correct path and click "Open" regardless.

When a level is loaded, right clicking a point in the preview will allow you to change the token at that specific spot. If you resample the level, any changes made will be lost.

The labels at the bottom will display the currently loaded path and information. This program was made mostly by one researcher and is not optimized. Impatiently clicking buttons might crash the program.

Edit Mode

In this mode, parts of a generated level can be resampled with TOAD-GAN. The red bounding box shows the area to be changed, while the yellow bounding box shows which blocks can still be affected by that change. The area of effect depends on the scale which is to be resampled and is a result of the Field of View produced by the convolutional layers. Changes in a lower scale will result in larger changes in the final level.

Use the control panel to set the bounding box. The representation inside the panel shows which pixels in the noise map will be changed.

TOAD-GUI_bbox

Resample the noise map in the chosen scale. The "Noise influence" is a learned parameter that indicates how big the effect of resampling in this scale will be.

TOAD-GUI_sc3

Scale 0 is the first scale and results in the most changes. Note that the tokens outside of the bounding box change. This is because of the field of view from the convolutional layers applied to the noise map.

TOAD-GUI_sc0

You can right click a token you want to change and replace it with another token present in the level. This should be done after resampling, as resampling will regenerate the level from the noise maps which will undo these edits.

TOAD-GUI_edit

TOAD-GAN

If you are interested in training your own Generator, refer to the TOAD-GAN Github and copy the folder of your trained generator into the generators/ folder. You should now be able to open it just like the provided generators.

The necessary files are:

generators.pth
noise_amplitudes.pth
noise_maps.pth
num_layer.pth
reals.pth
token_list.pth

Any other files can be deleted if you want to keep your folders tidy.

NOTE: When a generator is opened, it will not show these files in the dialog window. That is intended behavior for askdirectory() of tkinter. Just navigate to the correct path and click "Open" regardless.

Known Bugs

  • If the level play is quit using the window ('x' button in the corner), an error message regarding py4j will occur. In spite of that, the program should continue running normally.

  • If you have two monitors with different resolutions, the GUI and the Java window might not be displayed in the correct resolution. Try moving the windows to the monitor with the other resolution if you encounter this problem. You can also change the DPI awareness for the program in the beginning of GUI.py.

Built With

  • Tkinter - Python package for building GUIs
  • py4j - Python to Java interface
  • Pillow - Python Image Library for displaying images
  • Pytorch - Deep Learning Framework
  • Maven - Used for building the Mario-AI-Framework

Authors

  • Maren Awiszus - Institut für Informationsverarbeitung, Leibniz University Hanover
  • Frederik Schubert - Institut für Informationsverarbeitung, Leibniz University Hanover

Copyright

This program is not endorsed by Nintendo and is only intended for research purposes. Mario is a Nintendo character which the authors don’t own any rights to. Nintendo is also the sole owner of all the graphical assets in the game.

Owner
Maren A.
Maren A.
An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 984 Dec 16, 2022
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

97 Jan 05, 2023
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

Kaen Chan 34 Dec 31, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

<a href=[email protected]"> 55 Jan 03, 2023
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

106 Dec 14, 2022
This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

SCT This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking" The spatial-channel Transformer (SCT) enhan

Intelligent Vision for Robotics in Complex Environment 27 Nov 23, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022