GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

Overview

If you are using this code in your own project, please cite our paper:

@inproceedings{awiszus2020toadgan,
  title={TOAD-GAN: Coherent Style Level Generation from a Single Example},
  author={Awiszus, Maren and Schubert, Frederik and Rosenhahn, Bodo},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment},
  year={2020}
}

TOAD-GUI

TOAD-GUI is a Framework with which Super Mario Bros. levels can be randomly generated, loaded, saved, edited and played using a graphical user interface. Generation is done with pre-trained TOAD-GAN (Token-based, One-shot, Arbitrary Dimension Generative Adversarial Network). For more information on TOAD-GAN, please refer to the paper (arxiv link) and the Github.

TOAD-GUI_linux_example

This project uses the Mario-AI-Framework by Ahmed Khalifa and includes graphics from the game Super Mario Bros. It is not affiliated with or endorsed by Nintendo. The project was built for research purposes only.

AIIDE 2020

Our paper "TOAD-GAN: Coherent Style Level Generation from a Single Example" was accepted for oral presentation at AIIDE 2020! You can find our video presentation on YouTube.

Our code for TOAD-GUI and TOAD-GAN has been accepted for the AIIDE 2020 Artifact Evaluation Track! It will be recognized in the AIIDE 2020 Program.

Getting Started

This section includes the necessary steps to get TOAD-GUI running on your system.

Python

You will need Python 3 and the packages specified in requirements.txt. We recommend setting up a virtual environment with pip and installing the packages there.

$ pip3 install -r requirements.txt -f "https://download.pytorch.org/whl/torch_stable.html"

Make sure you use the pip3 that belongs to your previously defined virtual environment.

The GUI is made with Tkinter, which from Python 3.7 onwards is installed by default. If you don't have it installed because of an older version, follow the instructions here.

Java

TOAD-GUI uses the Mario-AI-Framework to play the generated levels. For the Framework to run, Java 11 (or higher) needs to be installed.

Running TOAD-GUI

Once all prerequisites are installed, TOAD-GUI can be started by running main.py.

$ python main.py

Make sure you are using the python installation you installed the prerequisites into.

TOAD-GUI

When running TOAD-GUI you can:

  • toad folder Open a Folder containing a Generator (TOAD-GAN)
  • level folder Open a (previously saved) level .txt to view and/or play
  • gear toad Generate a level of the size defined in the entries below
  • save button Save the currently loaded level level to a .txt or .png image file
  • play button Play the currently loaded level

NOTE: When a generator is opened, it will not show any files in the dialog window. That is intended behavior for askdirectory() of tkinter. Just navigate to the correct path and click "Open" regardless.

When a level is loaded, right clicking a point in the preview will allow you to change the token at that specific spot. If you resample the level, any changes made will be lost.

The labels at the bottom will display the currently loaded path and information. This program was made mostly by one researcher and is not optimized. Impatiently clicking buttons might crash the program.

Edit Mode

In this mode, parts of a generated level can be resampled with TOAD-GAN. The red bounding box shows the area to be changed, while the yellow bounding box shows which blocks can still be affected by that change. The area of effect depends on the scale which is to be resampled and is a result of the Field of View produced by the convolutional layers. Changes in a lower scale will result in larger changes in the final level.

Use the control panel to set the bounding box. The representation inside the panel shows which pixels in the noise map will be changed.

TOAD-GUI_bbox

Resample the noise map in the chosen scale. The "Noise influence" is a learned parameter that indicates how big the effect of resampling in this scale will be.

TOAD-GUI_sc3

Scale 0 is the first scale and results in the most changes. Note that the tokens outside of the bounding box change. This is because of the field of view from the convolutional layers applied to the noise map.

TOAD-GUI_sc0

You can right click a token you want to change and replace it with another token present in the level. This should be done after resampling, as resampling will regenerate the level from the noise maps which will undo these edits.

TOAD-GUI_edit

TOAD-GAN

If you are interested in training your own Generator, refer to the TOAD-GAN Github and copy the folder of your trained generator into the generators/ folder. You should now be able to open it just like the provided generators.

The necessary files are:

generators.pth
noise_amplitudes.pth
noise_maps.pth
num_layer.pth
reals.pth
token_list.pth

Any other files can be deleted if you want to keep your folders tidy.

NOTE: When a generator is opened, it will not show these files in the dialog window. That is intended behavior for askdirectory() of tkinter. Just navigate to the correct path and click "Open" regardless.

Known Bugs

  • If the level play is quit using the window ('x' button in the corner), an error message regarding py4j will occur. In spite of that, the program should continue running normally.

  • If you have two monitors with different resolutions, the GUI and the Java window might not be displayed in the correct resolution. Try moving the windows to the monitor with the other resolution if you encounter this problem. You can also change the DPI awareness for the program in the beginning of GUI.py.

Built With

  • Tkinter - Python package for building GUIs
  • py4j - Python to Java interface
  • Pillow - Python Image Library for displaying images
  • Pytorch - Deep Learning Framework
  • Maven - Used for building the Mario-AI-Framework

Authors

  • Maren Awiszus - Institut für Informationsverarbeitung, Leibniz University Hanover
  • Frederik Schubert - Institut für Informationsverarbeitung, Leibniz University Hanover

Copyright

This program is not endorsed by Nintendo and is only intended for research purposes. Mario is a Nintendo character which the authors don’t own any rights to. Nintendo is also the sole owner of all the graphical assets in the game.

Owner
Maren A.
Maren A.
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Parsa Dahesh 6 Dec 14, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
Toolbox to analyze temporal context invariance of deep neural networks

PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int

4 Oct 23, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022