GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

Overview

If you are using this code in your own project, please cite our paper:

@inproceedings{awiszus2020toadgan,
  title={TOAD-GAN: Coherent Style Level Generation from a Single Example},
  author={Awiszus, Maren and Schubert, Frederik and Rosenhahn, Bodo},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment},
  year={2020}
}

TOAD-GUI

TOAD-GUI is a Framework with which Super Mario Bros. levels can be randomly generated, loaded, saved, edited and played using a graphical user interface. Generation is done with pre-trained TOAD-GAN (Token-based, One-shot, Arbitrary Dimension Generative Adversarial Network). For more information on TOAD-GAN, please refer to the paper (arxiv link) and the Github.

TOAD-GUI_linux_example

This project uses the Mario-AI-Framework by Ahmed Khalifa and includes graphics from the game Super Mario Bros. It is not affiliated with or endorsed by Nintendo. The project was built for research purposes only.

AIIDE 2020

Our paper "TOAD-GAN: Coherent Style Level Generation from a Single Example" was accepted for oral presentation at AIIDE 2020! You can find our video presentation on YouTube.

Our code for TOAD-GUI and TOAD-GAN has been accepted for the AIIDE 2020 Artifact Evaluation Track! It will be recognized in the AIIDE 2020 Program.

Getting Started

This section includes the necessary steps to get TOAD-GUI running on your system.

Python

You will need Python 3 and the packages specified in requirements.txt. We recommend setting up a virtual environment with pip and installing the packages there.

$ pip3 install -r requirements.txt -f "https://download.pytorch.org/whl/torch_stable.html"

Make sure you use the pip3 that belongs to your previously defined virtual environment.

The GUI is made with Tkinter, which from Python 3.7 onwards is installed by default. If you don't have it installed because of an older version, follow the instructions here.

Java

TOAD-GUI uses the Mario-AI-Framework to play the generated levels. For the Framework to run, Java 11 (or higher) needs to be installed.

Running TOAD-GUI

Once all prerequisites are installed, TOAD-GUI can be started by running main.py.

$ python main.py

Make sure you are using the python installation you installed the prerequisites into.

TOAD-GUI

When running TOAD-GUI you can:

  • toad folder Open a Folder containing a Generator (TOAD-GAN)
  • level folder Open a (previously saved) level .txt to view and/or play
  • gear toad Generate a level of the size defined in the entries below
  • save button Save the currently loaded level level to a .txt or .png image file
  • play button Play the currently loaded level

NOTE: When a generator is opened, it will not show any files in the dialog window. That is intended behavior for askdirectory() of tkinter. Just navigate to the correct path and click "Open" regardless.

When a level is loaded, right clicking a point in the preview will allow you to change the token at that specific spot. If you resample the level, any changes made will be lost.

The labels at the bottom will display the currently loaded path and information. This program was made mostly by one researcher and is not optimized. Impatiently clicking buttons might crash the program.

Edit Mode

In this mode, parts of a generated level can be resampled with TOAD-GAN. The red bounding box shows the area to be changed, while the yellow bounding box shows which blocks can still be affected by that change. The area of effect depends on the scale which is to be resampled and is a result of the Field of View produced by the convolutional layers. Changes in a lower scale will result in larger changes in the final level.

Use the control panel to set the bounding box. The representation inside the panel shows which pixels in the noise map will be changed.

TOAD-GUI_bbox

Resample the noise map in the chosen scale. The "Noise influence" is a learned parameter that indicates how big the effect of resampling in this scale will be.

TOAD-GUI_sc3

Scale 0 is the first scale and results in the most changes. Note that the tokens outside of the bounding box change. This is because of the field of view from the convolutional layers applied to the noise map.

TOAD-GUI_sc0

You can right click a token you want to change and replace it with another token present in the level. This should be done after resampling, as resampling will regenerate the level from the noise maps which will undo these edits.

TOAD-GUI_edit

TOAD-GAN

If you are interested in training your own Generator, refer to the TOAD-GAN Github and copy the folder of your trained generator into the generators/ folder. You should now be able to open it just like the provided generators.

The necessary files are:

generators.pth
noise_amplitudes.pth
noise_maps.pth
num_layer.pth
reals.pth
token_list.pth

Any other files can be deleted if you want to keep your folders tidy.

NOTE: When a generator is opened, it will not show these files in the dialog window. That is intended behavior for askdirectory() of tkinter. Just navigate to the correct path and click "Open" regardless.

Known Bugs

  • If the level play is quit using the window ('x' button in the corner), an error message regarding py4j will occur. In spite of that, the program should continue running normally.

  • If you have two monitors with different resolutions, the GUI and the Java window might not be displayed in the correct resolution. Try moving the windows to the monitor with the other resolution if you encounter this problem. You can also change the DPI awareness for the program in the beginning of GUI.py.

Built With

  • Tkinter - Python package for building GUIs
  • py4j - Python to Java interface
  • Pillow - Python Image Library for displaying images
  • Pytorch - Deep Learning Framework
  • Maven - Used for building the Mario-AI-Framework

Authors

  • Maren Awiszus - Institut für Informationsverarbeitung, Leibniz University Hanover
  • Frederik Schubert - Institut für Informationsverarbeitung, Leibniz University Hanover

Copyright

This program is not endorsed by Nintendo and is only intended for research purposes. Mario is a Nintendo character which the authors don’t own any rights to. Nintendo is also the sole owner of all the graphical assets in the game.

Owner
Maren A.
Maren A.
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
Self-Supervised Contrastive Learning of Music Spectrograms

Self-Supervised Music Analysis Self-Supervised Contrastive Learning of Music Spectrograms Dataset Songs on the Billboard Year End Hot 100 were collect

27 Dec 10, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

VinAI Research 118 Dec 19, 2022
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022