Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Overview

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Installation

We use pip to install things into a python virtual environment. Refer to requirements.txt for package requirements. We use nestly + SCons to run simulations.

File descriptions

generate_data_single_pop.py -- Simulate a data stream from a single population following a logistic regression model.

  • Inputs:
    • --simulation: string for selecting the type of distribution shift. Options for this argument are the keys in SIM_SETTINGS in constants.py.
  • Outputs:
    • --out-file: pickle file containing the data stream

generate_data_two_pop.py -- Simulate a data stream from two subpopulations, where each are generated using logistic regression models. Similar arguments as generate_data_single_pop.py. The percentage split beween the two subpopulations is controlled by the --subpopulations argument.

  • Outputs:
    • --out-file: pickle file containing the data stream

create_modeler.py -- Creates a model developer who fits the original prediction model and may propose a continually refitted model at each time point.

  • Inputs:
    • --data-file: pickle file with the entire data stream
    • --simulation: string for selecting the model refitting strategy by the model developer. Options are to keep the model locked (locked), refit on all accumulated data (cumulative_refit), and refit on the latest observations within some window length (boxed, window length specified by --max-box). The last two options is to train an ensemble with the original and the cumulative_refit models (combo_refit) and train an ensemble with the original and the boxed models (combo_boxed).
  • Outputs:
    • --out-file: pickle file containing the modeler

main.py -- Given the data and the model developer, run online model recalibration/revision using MarBLR and BLR.

  • Inputs:
    • --data-file: pickle file with the entire data stream
    • --model-file: pickle file with the model developer
    • --type-i-regret-factor: Type I regret will be controlled at the rate of args.type_i_regret_factor * (Initial loss of the original model)
    • --reference-recalibs: comma-separated string to select which other online model revisers to run. Options are no updating at all locked, ADAM adam, cumulative logistic regression cumulativeLR.
  • Outputs:
    • --obs-scores-file: csv file containing predicted probabilities and observed outcomes on the data stream
    • --history-file: csv file containing the predicted and actual probabilities on a held-out test data stream (only available if the data stream was simulated)
    • --scores-file: csv file containing performance measures on a held-out test data stream (only available if the data stream was simulated)
    • --recalibrators-file: pickle file containing the history of the online model revisers

Reproducing simulation results

The simulation_recalib folder contains the first set of simulations for online model recalibration. The simulation_revise folder contains the second set of simulations where we perform online logistic revision. The simulation_revise folder contains the third set of simulations where we perform online ensembling of the original model with a continually refitted model. The copd_analysis folder contains code for online model recalibration and revision for the COPD dataset. To reproduce the simulations, run scons .

Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21

T M Feroz Ali 3 Jun 17, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
A knowledge base construction engine for richly formatted data

Fonduer is a Python package and framework for building knowledge base construction (KBC) applications from richly formatted data. Note that Fonduer is

HazyResearch 386 Dec 05, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
deep_image_prior_extension

Code for "Is Deep Image Prior in Need of a Good Education?" Project page: https://jleuschn.github.io/docs.educated_deep_image_prior/. Supplementary Ma

riccardo barbano 7 Jan 09, 2022
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

38 Aug 31, 2022