Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Overview

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Installation

We use pip to install things into a python virtual environment. Refer to requirements.txt for package requirements. We use nestly + SCons to run simulations.

File descriptions

generate_data_single_pop.py -- Simulate a data stream from a single population following a logistic regression model.

  • Inputs:
    • --simulation: string for selecting the type of distribution shift. Options for this argument are the keys in SIM_SETTINGS in constants.py.
  • Outputs:
    • --out-file: pickle file containing the data stream

generate_data_two_pop.py -- Simulate a data stream from two subpopulations, where each are generated using logistic regression models. Similar arguments as generate_data_single_pop.py. The percentage split beween the two subpopulations is controlled by the --subpopulations argument.

  • Outputs:
    • --out-file: pickle file containing the data stream

create_modeler.py -- Creates a model developer who fits the original prediction model and may propose a continually refitted model at each time point.

  • Inputs:
    • --data-file: pickle file with the entire data stream
    • --simulation: string for selecting the model refitting strategy by the model developer. Options are to keep the model locked (locked), refit on all accumulated data (cumulative_refit), and refit on the latest observations within some window length (boxed, window length specified by --max-box). The last two options is to train an ensemble with the original and the cumulative_refit models (combo_refit) and train an ensemble with the original and the boxed models (combo_boxed).
  • Outputs:
    • --out-file: pickle file containing the modeler

main.py -- Given the data and the model developer, run online model recalibration/revision using MarBLR and BLR.

  • Inputs:
    • --data-file: pickle file with the entire data stream
    • --model-file: pickle file with the model developer
    • --type-i-regret-factor: Type I regret will be controlled at the rate of args.type_i_regret_factor * (Initial loss of the original model)
    • --reference-recalibs: comma-separated string to select which other online model revisers to run. Options are no updating at all locked, ADAM adam, cumulative logistic regression cumulativeLR.
  • Outputs:
    • --obs-scores-file: csv file containing predicted probabilities and observed outcomes on the data stream
    • --history-file: csv file containing the predicted and actual probabilities on a held-out test data stream (only available if the data stream was simulated)
    • --scores-file: csv file containing performance measures on a held-out test data stream (only available if the data stream was simulated)
    • --recalibrators-file: pickle file containing the history of the online model revisers

Reproducing simulation results

The simulation_recalib folder contains the first set of simulations for online model recalibration. The simulation_revise folder contains the second set of simulations where we perform online logistic revision. The simulation_revise folder contains the third set of simulations where we perform online ensembling of the original model with a continually refitted model. The copd_analysis folder contains code for online model recalibration and revision for the COPD dataset. To reproduce the simulations, run scons .

SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
Certified Patch Robustness via Smoothed Vision Transformers

Certified Patch Robustness via Smoothed Vision Transformers This repository contains the code for replicating the results of our paper: Certified Patc

Madry Lab 35 Dec 14, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Ofir Press 138 Apr 15, 2022
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
Car Parking Tracker Using OpenCv

Car Parking Vacancy Tracker Using OpenCv I used basic image processing methods i

Adwait Kelkar 30 Dec 03, 2022
Implementation of the SUMO (Slim U-Net trained on MODA) model

SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava

6 Nov 19, 2022
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022