Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Overview

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Installation

We use pip to install things into a python virtual environment. Refer to requirements.txt for package requirements. We use nestly + SCons to run simulations.

File descriptions

generate_data_single_pop.py -- Simulate a data stream from a single population following a logistic regression model.

  • Inputs:
    • --simulation: string for selecting the type of distribution shift. Options for this argument are the keys in SIM_SETTINGS in constants.py.
  • Outputs:
    • --out-file: pickle file containing the data stream

generate_data_two_pop.py -- Simulate a data stream from two subpopulations, where each are generated using logistic regression models. Similar arguments as generate_data_single_pop.py. The percentage split beween the two subpopulations is controlled by the --subpopulations argument.

  • Outputs:
    • --out-file: pickle file containing the data stream

create_modeler.py -- Creates a model developer who fits the original prediction model and may propose a continually refitted model at each time point.

  • Inputs:
    • --data-file: pickle file with the entire data stream
    • --simulation: string for selecting the model refitting strategy by the model developer. Options are to keep the model locked (locked), refit on all accumulated data (cumulative_refit), and refit on the latest observations within some window length (boxed, window length specified by --max-box). The last two options is to train an ensemble with the original and the cumulative_refit models (combo_refit) and train an ensemble with the original and the boxed models (combo_boxed).
  • Outputs:
    • --out-file: pickle file containing the modeler

main.py -- Given the data and the model developer, run online model recalibration/revision using MarBLR and BLR.

  • Inputs:
    • --data-file: pickle file with the entire data stream
    • --model-file: pickle file with the model developer
    • --type-i-regret-factor: Type I regret will be controlled at the rate of args.type_i_regret_factor * (Initial loss of the original model)
    • --reference-recalibs: comma-separated string to select which other online model revisers to run. Options are no updating at all locked, ADAM adam, cumulative logistic regression cumulativeLR.
  • Outputs:
    • --obs-scores-file: csv file containing predicted probabilities and observed outcomes on the data stream
    • --history-file: csv file containing the predicted and actual probabilities on a held-out test data stream (only available if the data stream was simulated)
    • --scores-file: csv file containing performance measures on a held-out test data stream (only available if the data stream was simulated)
    • --recalibrators-file: pickle file containing the history of the online model revisers

Reproducing simulation results

The simulation_recalib folder contains the first set of simulations for online model recalibration. The simulation_revise folder contains the second set of simulations where we perform online logistic revision. The simulation_revise folder contains the third set of simulations where we perform online ensembling of the original model with a continually refitted model. The copd_analysis folder contains code for online model recalibration and revision for the COPD dataset. To reproduce the simulations, run scons .

Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Semi-SDP Semi-supervised parser for semantic dependency parsing.

Semi-SDP Semi-supervised parser for semantic dependency parsing. This repo contains the code used for the semi-supervised semantic dependency parser i

12 Sep 17, 2021
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 03, 2023
Implementing a simplified copy of Shazam application from scratch using MinHashing and LSH.

Building Shazam from scratch In this repository we tried to implement a simplified copy of the Shazam application able to tell you the name of a song

Arturo Ghinassi 0 Nov 17, 2022
"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

MEGVII Research 179 Jan 02, 2023
A naive ROS interface for visualDet3D.

YOLO3D ROS Node This repo contains a Monocular 3D detection Ros node. Base on https://github.com/Owen-Liuyuxuan/visualDet3D All parameters are exposed

Yuxuan Liu 19 Oct 08, 2022
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
Pytorch Lightning 1.2k Jan 06, 2023
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022