Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Overview

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Installation

We use pip to install things into a python virtual environment. Refer to requirements.txt for package requirements. We use nestly + SCons to run simulations.

File descriptions

generate_data_single_pop.py -- Simulate a data stream from a single population following a logistic regression model.

  • Inputs:
    • --simulation: string for selecting the type of distribution shift. Options for this argument are the keys in SIM_SETTINGS in constants.py.
  • Outputs:
    • --out-file: pickle file containing the data stream

generate_data_two_pop.py -- Simulate a data stream from two subpopulations, where each are generated using logistic regression models. Similar arguments as generate_data_single_pop.py. The percentage split beween the two subpopulations is controlled by the --subpopulations argument.

  • Outputs:
    • --out-file: pickle file containing the data stream

create_modeler.py -- Creates a model developer who fits the original prediction model and may propose a continually refitted model at each time point.

  • Inputs:
    • --data-file: pickle file with the entire data stream
    • --simulation: string for selecting the model refitting strategy by the model developer. Options are to keep the model locked (locked), refit on all accumulated data (cumulative_refit), and refit on the latest observations within some window length (boxed, window length specified by --max-box). The last two options is to train an ensemble with the original and the cumulative_refit models (combo_refit) and train an ensemble with the original and the boxed models (combo_boxed).
  • Outputs:
    • --out-file: pickle file containing the modeler

main.py -- Given the data and the model developer, run online model recalibration/revision using MarBLR and BLR.

  • Inputs:
    • --data-file: pickle file with the entire data stream
    • --model-file: pickle file with the model developer
    • --type-i-regret-factor: Type I regret will be controlled at the rate of args.type_i_regret_factor * (Initial loss of the original model)
    • --reference-recalibs: comma-separated string to select which other online model revisers to run. Options are no updating at all locked, ADAM adam, cumulative logistic regression cumulativeLR.
  • Outputs:
    • --obs-scores-file: csv file containing predicted probabilities and observed outcomes on the data stream
    • --history-file: csv file containing the predicted and actual probabilities on a held-out test data stream (only available if the data stream was simulated)
    • --scores-file: csv file containing performance measures on a held-out test data stream (only available if the data stream was simulated)
    • --recalibrators-file: pickle file containing the history of the online model revisers

Reproducing simulation results

The simulation_recalib folder contains the first set of simulations for online model recalibration. The simulation_revise folder contains the second set of simulations where we perform online logistic revision. The simulation_revise folder contains the third set of simulations where we perform online ensembling of the original model with a continually refitted model. The copd_analysis folder contains code for online model recalibration and revision for the COPD dataset. To reproduce the simulations, run scons .

An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks

AnalyticMesh Analytic Marching is an exact meshing solution from neural networks. Compared to standard methods, it completely avoids geometric and top

Karbo 45 Dec 21, 2022
SplineConv implementation for Paddle.

SplineConv implementation for Paddle This module implements the SplineConv operators from Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mül

北海若 3 Dec 29, 2021
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
一套完整的微博舆情分析流程代码,包括微博爬虫、LDA主题分析和情感分析。

已经将项目的关键文件上传,包含微博爬虫、LDA主题分析和情感分析三个部分。 1.微博爬虫 实现微博评论爬取和微博用户信息爬取,一天大概十万条。 2.LDA主题分析 实现文档主题抽取,包括数据清洗及分词、主题数的确定(主题一致性和困惑度)和最优主题模型的选择(暴力搜索)。 3.情感分析 实现评论文本的

182 Jan 02, 2023
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
Diffgram - Supervised Learning Data Platform

Data Annotation, Data Labeling, Annotation Tooling, Training Data for Machine Learning

Diffgram 1.6k Jan 07, 2023
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task

multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par

14 Dec 25, 2022
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
This repo is a C++ version of yolov5_deepsort_tensorrt. Packing all C++ programs into .so files, using Python script to call C++ programs further.

yolov5_deepsort_tensorrt_cpp Introduction This repo is a C++ version of yolov5_deepsort_tensorrt. And packing all C++ programs into .so files, using P

41 Dec 27, 2022