Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Related tags

Deep Learningcqd
Overview

Continuous Query Decomposition

This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neural Link Predictors:

@inproceedings{
    arakelyan2021complex,
    title={Complex Query Answering with Neural Link Predictors},
    author={Erik Arakelyan and Daniel Daza and Pasquale Minervini and Michael Cochez},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=Mos9F9kDwkz}
}

In this work we present CQD, a method that reuses a pretrained link predictor to answer complex queries, by scoring atom predicates independently and aggregating the scores via t-norms and t-conorms.

Our code is based on an implementation of ComplEx-N3 available here.

Please follow the instructions next to reproduce the results in our experiments.

1. Install the requirements

We recommend creating a new environment:

% conda create --name cqd python=3.8 && conda activate cqd
% pip install -r requirements.txt

2. Download the data

We use 3 knowledge graphs: FB15k, FB15k-237, and NELL. From the root of the repository, download and extract the files to obtain the folder data, containing the sets of triples and queries for each graph.

% wget http://data.neuralnoise.com/cqd-data.tgz
% tar xvf cqd-data.tgz

3. Download the models

Then you need neural link prediction models -- one for each of the datasets. Our pre-trained neural link prediction models are available here:

% wget http://data.neuralnoise.com/cqd-models.tgz
% tar xvf cqd-data.tgz

3. Alternative -- Train your own models

To obtain entity and relation embeddings, we use ComplEx. Use the next commands to train the embeddings for each dataset.

FB15k

% python -m kbc.learn data/FB15k --rank 1000 --reg 0.01 --max_epochs 100  --batch_size 100

FB15k-237

% python -m kbc.learn data/FB15k-237 --rank 1000 --reg 0.05 --max_epochs 100  --batch_size 1000

NELL

% python -m kbc.learn data/NELL --rank 1000 --reg 0.05 --max_epochs 100  --batch_size 1000

Once training is done, the models will be saved in the models directory.

4. Answering queries with CQD

CQD can answer complex queries via continuous (CQD-CO) or combinatorial optimisation (CQD-Beam).

CQD-Beam

Use the kbc.cqd_beam script to answer queries, providing the path to the dataset, and the saved link predictor trained in the previous step. For example,

% python -m kbc.cqd_beam --model_path models/[model_filename].pt

Example:

% PYTHONPATH=. python3 kbc/cqd_beam.py \
  --model_path models/FB15k-model-rank-1000-epoch-100-*.pt \
  --dataset FB15K --mode test --t_norm product --candidates 64 \
  --scores_normalize 0 data/FB15k

models/FB15k-model-rank-1000-epoch-100-1602520745.pt FB15k product 64
ComplEx(
  (embeddings): ModuleList(
    (0): Embedding(14951, 2000, sparse=True)
    (1): Embedding(2690, 2000, sparse=True)
  )
)

[..]

This will save a series of JSON fils with results, e.g.

% cat "topk_d=FB15k_t=product_e=2_2_rank=1000_k=64_sn=0.json"
{
  "MRRm_new": 0.7542805715523118,
  "MRm_new": 50.71081983144581,
  "[email protected]_new": 0.6896709378392843,
  "[email protected]_new": 0.7955001359095913,
  "[email protected]_new": 0.8676865172456019
}

CQD-CO

Use the kbc.cqd_co script to answer queries, providing the path to the dataset, and the saved link predictor trained in the previous step. For example,

% python -m kbc.cqd_co data/FB15k --model_path models/[model_filename].pt --chain_type 1_2

Final Results

All results from the paper can be produced as follows:

% cd results/topk
% ../topk-parse.py *.json | grep rank=1000
d=FB15K rank=1000 & 0.779 & 0.584 & 0.796 & 0.837 & 0.377 & 0.658 & 0.839 & 0.355
d=FB237 rank=1000 & 0.279 & 0.219 & 0.352 & 0.457 & 0.129 & 0.249 & 0.284 & 0.128
d=NELL rank=1000 & 0.343 & 0.297 & 0.410 & 0.529 & 0.168 & 0.283 & 0.536 & 0.157
% cd ../cont
% ../cont-parse.py *.json | grep rank=1000
d=FB15k rank=1000 & 0.454 & 0.191 & 0.796 & 0.837 & 0.336 & 0.513 & 0.816 & 0.319
d=FB15k-237 rank=1000 & 0.213 & 0.131 & 0.352 & 0.457 & 0.146 & 0.222 & 0.281 & 0.132
d=NELL rank=1000 & 0.265 & 0.220 & 0.410 & 0.529 & 0.196 & 0.302 & 0.531 & 0.194
Owner
UCL Natural Language Processing
UCL Natural Language Processing
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian

117 Jan 07, 2023
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
This repository contains a pytorch implementation of "StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision".

StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision | Project Page | Paper | This repository contains a pytorch implementation of "St

87 Dec 09, 2022
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features

CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation

Costa Huang 1.8k Jan 01, 2023
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

55 Dec 21, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022