Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Related tags

Deep Learningcqd
Overview

Continuous Query Decomposition

This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neural Link Predictors:

@inproceedings{
    arakelyan2021complex,
    title={Complex Query Answering with Neural Link Predictors},
    author={Erik Arakelyan and Daniel Daza and Pasquale Minervini and Michael Cochez},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=Mos9F9kDwkz}
}

In this work we present CQD, a method that reuses a pretrained link predictor to answer complex queries, by scoring atom predicates independently and aggregating the scores via t-norms and t-conorms.

Our code is based on an implementation of ComplEx-N3 available here.

Please follow the instructions next to reproduce the results in our experiments.

1. Install the requirements

We recommend creating a new environment:

% conda create --name cqd python=3.8 && conda activate cqd
% pip install -r requirements.txt

2. Download the data

We use 3 knowledge graphs: FB15k, FB15k-237, and NELL. From the root of the repository, download and extract the files to obtain the folder data, containing the sets of triples and queries for each graph.

% wget http://data.neuralnoise.com/cqd-data.tgz
% tar xvf cqd-data.tgz

3. Download the models

Then you need neural link prediction models -- one for each of the datasets. Our pre-trained neural link prediction models are available here:

% wget http://data.neuralnoise.com/cqd-models.tgz
% tar xvf cqd-data.tgz

3. Alternative -- Train your own models

To obtain entity and relation embeddings, we use ComplEx. Use the next commands to train the embeddings for each dataset.

FB15k

% python -m kbc.learn data/FB15k --rank 1000 --reg 0.01 --max_epochs 100  --batch_size 100

FB15k-237

% python -m kbc.learn data/FB15k-237 --rank 1000 --reg 0.05 --max_epochs 100  --batch_size 1000

NELL

% python -m kbc.learn data/NELL --rank 1000 --reg 0.05 --max_epochs 100  --batch_size 1000

Once training is done, the models will be saved in the models directory.

4. Answering queries with CQD

CQD can answer complex queries via continuous (CQD-CO) or combinatorial optimisation (CQD-Beam).

CQD-Beam

Use the kbc.cqd_beam script to answer queries, providing the path to the dataset, and the saved link predictor trained in the previous step. For example,

% python -m kbc.cqd_beam --model_path models/[model_filename].pt

Example:

% PYTHONPATH=. python3 kbc/cqd_beam.py \
  --model_path models/FB15k-model-rank-1000-epoch-100-*.pt \
  --dataset FB15K --mode test --t_norm product --candidates 64 \
  --scores_normalize 0 data/FB15k

models/FB15k-model-rank-1000-epoch-100-1602520745.pt FB15k product 64
ComplEx(
  (embeddings): ModuleList(
    (0): Embedding(14951, 2000, sparse=True)
    (1): Embedding(2690, 2000, sparse=True)
  )
)

[..]

This will save a series of JSON fils with results, e.g.

% cat "topk_d=FB15k_t=product_e=2_2_rank=1000_k=64_sn=0.json"
{
  "MRRm_new": 0.7542805715523118,
  "MRm_new": 50.71081983144581,
  "[email protected]_new": 0.6896709378392843,
  "[email protected]_new": 0.7955001359095913,
  "[email protected]_new": 0.8676865172456019
}

CQD-CO

Use the kbc.cqd_co script to answer queries, providing the path to the dataset, and the saved link predictor trained in the previous step. For example,

% python -m kbc.cqd_co data/FB15k --model_path models/[model_filename].pt --chain_type 1_2

Final Results

All results from the paper can be produced as follows:

% cd results/topk
% ../topk-parse.py *.json | grep rank=1000
d=FB15K rank=1000 & 0.779 & 0.584 & 0.796 & 0.837 & 0.377 & 0.658 & 0.839 & 0.355
d=FB237 rank=1000 & 0.279 & 0.219 & 0.352 & 0.457 & 0.129 & 0.249 & 0.284 & 0.128
d=NELL rank=1000 & 0.343 & 0.297 & 0.410 & 0.529 & 0.168 & 0.283 & 0.536 & 0.157
% cd ../cont
% ../cont-parse.py *.json | grep rank=1000
d=FB15k rank=1000 & 0.454 & 0.191 & 0.796 & 0.837 & 0.336 & 0.513 & 0.816 & 0.319
d=FB15k-237 rank=1000 & 0.213 & 0.131 & 0.352 & 0.457 & 0.146 & 0.222 & 0.281 & 0.132
d=NELL rank=1000 & 0.265 & 0.220 & 0.410 & 0.529 & 0.196 & 0.302 & 0.531 & 0.194
Owner
UCL Natural Language Processing
UCL Natural Language Processing
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)

Face-Detection-with-MTCNN Face detection is a computer vision problem that involves finding faces in photos. It is a trivial problem for humans to sol

Chetan Hirapara 3 Oct 07, 2022
Generating Fractals on Starknet with Cairo

StarknetFractals Generating the mandelbrot set on Starknet Current Implementation generates 1 pixel of the fractal per call(). It takes a few minutes

Orland0x 10 Jul 16, 2022
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Gyeongsik Moon 29 Sep 24, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
4K videos with annotated masks in our ICCV2021 paper 'Internal Video Inpainting by Implicit Long-range Propagation'.

Annotated 4K Videos paper | project website | code | demo video 4K videos with annotated object masks in our ICCV2021 paper: Internal Video Inpainting

Tengfei Wang 21 Nov 05, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
3rd place solution for the Weather4cast 2021 Stage 1 Challenge

weather4cast2021_Stage1 3rd place solution for the Weather4cast 2021 Stage 1 Challenge Dependencies The code can be executed from a fresh environment

5 Aug 14, 2022
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021