Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

Overview

counterfactual-tpp

This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes.

Pre-requisites

This code depends on the following packages:

  1. networkx
  2. numpy
  3. pandas
  4. matplotlib

to generate map plots:

  1. GeoPandas
  2. geoplot

Code structure

  • src/counterfactual_tpp.py: Contains the code to sample rejected events using the superposition property and the algorithm to calculate the counterfactuals.
  • src/gumbel.py: Contains the utility functions for the Gumbel-Max SCM.
  • src/sampling_utils.py: Contains the code for the Lewis' thinning algorithm (thinning_T function) and some other sampling utilities.
  • src/hawkes/hawkes.py: Contains the code for sampling from the hawkes process using the superposition property of tpps. It also includes the algorithm for sampling a counterfactual sequence of events given a sequence of observed events for a Hawkes process.
  • src/hawkes/hawkes_example.ipynb: Contains an example of running algorithm 3 (in the paper) for both cases where we have (1) both observed and un-observed events, and (2) the case that we have only the observed events.
  • ebola/graph_generation.py: Contains code to build the Ebola network based on the network of connected districts. This code is adopted from the disease-control project.
  • ebola/dynamics.py: Contains code for sampling counterfactual sequence of infections given a sequence of observed infections from the SIR porcess (the calculate_counterfactual function). The rest of the code is adopted from the disease-control project, which simulates continuous-time SIR epidemics with exponentially distributed inter-event times.

The directory ebola/data/ebola contains the information about the Ebola network adjanceny matrix and the cleaned ebola outbreak data adopted from the disease-control project.

The directory ebola/map/geojson contains the geographical information of the districts studied in the Ebola outbreak dataset. The geojson files are obtained from Nominatim.

The directory ebola/map/overall_data contains data for generating the geographical maps in the paper, and includs the overall number of infection under applying different interventions.

The directories src/data_hawkes and src/data_inhomogeneous contain observational data used to generate Synthetic plots in the paper. You can use this data to re-generate paper's plots. Otherwise, you can simply generate new random samples by the code.

Experiments

Synthetic

Epidemiological

Citation

If you use parts of the code in this repository for your own research, please consider citing:

@article{noorbakhsh2021counterfactual,
        title={Counterfactual Temporal Point Processes},
        author={Noorbakhsh, Kimia and Gomez-Rodriguez, Manuel},
        journal={arXiv preprint arXiv:2111.07603},
        year={2021}
}
Owner
Networks Learning
Networks Learning group at MPI-SWS
Networks Learning
🐾 Semantic segmentation of paws from cute pet images (PyTorch)

🐾 paw-segmentation 🐾 Semantic segmentation of paws from cute pet images 🐾 Semantic segmentation of paws from cute pet images (PyTorch) 🐾 Paw Segme

Zabir Al Nazi Nabil 3 Feb 01, 2022
Large scale and asynchronous Hyperparameter Optimization at your fingertip.

Syne Tune This package provides state-of-the-art distributed hyperparameter optimizers (HPO) where trials can be evaluated with several backend option

Amazon Web Services - Labs 236 Jan 01, 2023
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

Gul Varol 59 Dec 14, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
Everything's Talkin': Pareidolia Face Reenactment (CVPR2021)

Everything's Talkin': Pareidolia Face Reenactment (CVPR2021) Linsen Song, Wayne Wu, Chaoyou Fu, Chen Qian, Chen Change Loy, and Ran He [Paper], [Video

71 Dec 21, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

1 Jan 07, 2022
Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training Introduction This is a PyTorch implementation of "

weijiawu 34 Nov 09, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
State of the Art Neural Networks for Generative Deep Learning

pyradox-generative State of the Art Neural Networks for Generative Deep Learning Table of Contents pyradox-generative Table of Contents Installation U

Ritvik Rastogi 8 Sep 29, 2022
Lightwood is Legos for Machine Learning.

Lightwood is like Legos for Machine Learning. A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glu

MindsDB Inc 312 Jan 08, 2023
A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022
Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets This is the official implementation of "Towards Good Pract

Sanja Fidler's Lab 52 Nov 22, 2022
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022