Automatic deep learning for image classification.

Related tags

Deep LearningAutoDL
Overview

AutoDL

AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image.

AutoGluon

Documents for AutoDL Benchmark

This tutorial demonstrates how to use AutoDL with your own custom datasets. As an example, we use a dataset from Kaggle to show the required steps to format image data properly for AutoDL.

Step 1: Organizing the dataset into proper directories

After completing this step, you will have the following directory structure on your machine:

   Your_Dataset/
    ├──train/
        ├── class1/
        ├── class2/
        ├── class3/
        ├── ...
    ├──test/
        ├── class1/
        ├── class2/
        ├── class3/
        ├── ...

Here Your_Dataset is a folder containing the raw images categorized into classes. For example, subfolder class1 contains all images that belong to the first class, class2 contains all images belonging to the second class, etc.

We generally recommend at least 100 training images per class for reasonable classification performance, but this might depend on the type of images in your specific use-case.

Under each class, the following image formats are supported when training your model:

- JPG
- JPEG
- PNG

In the same dataset, all the images should be in the same format. Note that in image classification, we do not require that all images have the same resolution.

You will need to organize your dataset into the above directory structure before using AutoDL.

For kaggle datasets

Sometimes dataset needs additional data preprocessing by Script data_processing.

  data
    ├──XXXX/images_all
    ├         ├── img1.jpg
    ├         ├── img2.jpg
    ├──XXXX/test
    ├         ├── ...

python data_processing.py --dataset <aerial\dog\> --data-dir data

Finally, we have the desired directory structure under ./data/XXXX/train/, which in this case looks as follows:

  data
    ├──XXXX/train
    ├         ├── classA
    ├         ├── classb
    ├         ├── ...
    ├──XXXX/test
    ├         ├── ...
    ├
    ├
    ├──ZZZZ/train
    ├         ├── classA
    ├         ├── classb
    ├         ├── ...
    ├──ZZZZ/test
              ├── ...

For Paperwithcode datasets

TODO

python data_processing.py --dataset <aerial\dog\> --data-dir data

Step 2: Split the original dataset into train_data and test_data

Sometimes dataset needs additional data_split by Script data_split.

dataset__name
    ├──train
        ├──split/train
        ├         ├── classA
        ├         ├── classb
        ├         ├── ...
        ├──split/test
        ├         ├── classA
        ├         ├── classb
        ├         ├── ...
    ├──test
        ├── img1.jpg
        ├── img2.jpg
        ├── ...
python data_split.py --data-dir /data/AutoML_compete/Store-type-recognition/

Step 3: Use AutoDL fit to generate a classification model

Now that we have a Dataset object, we can use AutoGluon's default configuration to obtain an image classification model using the fit function.

Run benchmark.py script with different dataset:

AutoGluon Benchmark

python benchmark.py \
    --data_path /media/robin/DATA/datatsets/image_data/dog-breed-identification \
    --output_path /home/robin/jianzh/automl/autodl/benchmark \
    --dataset dog-breed-identification \
    --train_framework autogluon

AutoKeras Benchmark

python benchmark.py \
    --data_path /media/robin/DATA/datatsets/image_data/hymenoptera/images/train \
    --dataset hymenoptera \
    --output_path /home/robin/jianzh/automl/autodl/benchmark \
    --train_framework autokeras

Step 4: fit to generate a classification model

Bag of tricks are used on image classification dataset.

Customize parameter configuration according your data as follow:

lr_config = ag.space.Dict(
            lr_mode='cosine',
            lr_decay=0.1,
            lr_decay_period=0,
            lr_decay_epoch='40,80',
            warmup_lr=0.0,
            warmup_epochs=5)

tricks = ag.space.Dict(
            last_gamma=True,
            use_pretrained=True,
            use_se=False,
            mixup=False,
            mixup_alpha=0.2,
            mixup_off_epoch=0,
            label_smoothing=True,
            no_wd=True,
            teacher_name=None,
            temperature=20.0,
            hard_weight=0.5,
            batch_norm=False,
            use_gn=False)
Owner
wenqi
Learning is all you need!
wenqi
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

122 Dec 28, 2022
Python implementation of Bayesian optimization over permutation spaces.

Bayesian Optimization over Permutation Spaces This repository contains the source code and the resources related to the paper "Bayesian Optimization o

Aryan Deshwal 9 Dec 23, 2022
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
Learning Representational Invariances for Data-Efficient Action Recognition

Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances

Virginia Tech Vision and Learning Lab 27 Nov 22, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
NumPy로 구현한 딥러닝 라이브러리입니다. (자동 미분 지원)

Deep Learning Library only using NumPy 본 레포지토리는 NumPy 만으로 구현한 딥러닝 라이브러리입니다. 자동 미분이 구현되어 있습니다. 자동 미분 자동 미분은 미분을 자동으로 계산해주는 기능입니다. 아래 코드는 자동 미분을 활용해 역전파

조준희 17 Aug 16, 2022
Gym environment for FLIPIT: The Game of "Stealthy Takeover"

gym-flipit Gym environment for FLIPIT: The Game of "Stealthy Takeover" invented by Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. Desi

Lisa Oakley 2 Dec 15, 2021
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
To SMOTE, or not to SMOTE?

To SMOTE, or not to SMOTE? This package includes the code required to repeat the experiments in the paper and to analyze the results. To SMOTE, or not

Amazon Web Services 1 Jan 03, 2022
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
PyTorch Implementation of Backbone of PicoDet

PicoDet-Backbone PyTorch Implementation of Backbone of PicoDet Original Implementation is implemented on PaddlePaddle. Example picodet_l_backbone = ES

Yonghye Kwon 7 Jul 12, 2022
The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs

catsetmat The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs To be able to run it, add catsetmat to PYTHONPATH H

2 Dec 19, 2022