FMA: A Dataset For Music Analysis

Overview

FMA: A Dataset For Music Analysis

Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson.
International Society for Music Information Retrieval Conference (ISMIR), 2017.

We introduce the Free Music Archive (FMA), an open and easily accessible dataset suitable for evaluating several tasks in MIR, a field concerned with browsing, searching, and organizing large music collections. The community's growing interest in feature and end-to-end learning is however restrained by the limited availability of large audio datasets. The FMA aims to overcome this hurdle by providing 917 GiB and 343 days of Creative Commons-licensed audio from 106,574 tracks from 16,341 artists and 14,854 albums, arranged in a hierarchical taxonomy of 161 genres. It provides full-length and high-quality audio, pre-computed features, together with track- and user-level metadata, tags, and free-form text such as biographies. We here describe the dataset and how it was created, propose a train/validation/test split and three subsets, discuss some suitable MIR tasks, and evaluate some baselines for genre recognition. Code, data, and usage examples are available at https://github.com/mdeff/fma.

Data

All metadata and features for all tracks are distributed in fma_metadata.zip (342 MiB). The below tables can be used with pandas or any other data analysis tool. See the paper or the usage.ipynb notebook for a description.

  • tracks.csv: per track metadata such as ID, title, artist, genres, tags and play counts, for all 106,574 tracks.
  • genres.csv: all 163 genres with name and parent (used to infer the genre hierarchy and top-level genres).
  • features.csv: common features extracted with librosa.
  • echonest.csv: audio features provided by Echonest (now Spotify) for a subset of 13,129 tracks.

Then, you got various sizes of MP3-encoded audio data:

  1. fma_small.zip: 8,000 tracks of 30s, 8 balanced genres (GTZAN-like) (7.2 GiB)
  2. fma_medium.zip: 25,000 tracks of 30s, 16 unbalanced genres (22 GiB)
  3. fma_large.zip: 106,574 tracks of 30s, 161 unbalanced genres (93 GiB)
  4. fma_full.zip: 106,574 untrimmed tracks, 161 unbalanced genres (879 GiB)

See the wiki (or #41) for known issues (errata).

Code

The following notebooks, scripts, and modules have been developed for the dataset.

  1. usage.ipynb: shows how to load the datasets and develop, train, and test your own models with it.
  2. analysis.ipynb: exploration of the metadata, data, and features. Creates the figures used in the paper.
  3. baselines.ipynb: baseline models for genre recognition, both from audio and features.
  4. features.py: features extraction from the audio (used to create features.csv).
  5. webapi.ipynb: query the web API of the FMA. Can be used to update the dataset.
  6. creation.ipynb: creation of the dataset (used to create tracks.csv and genres.csv).
  7. creation.py: creation of the dataset (long-running data collection and processing).
  8. utils.py: helper functions and classes.

Usage

Binder   Click the binder badge to play with the code and data from your browser without installing anything.

  1. Clone the repository.

    git clone https://github.com/mdeff/fma.git
    cd fma
  2. Create a Python 3.6 environment.
    # with https://conda.io
    conda create -n fma python=3.6
    conda activate fma
    
    # with https://github.com/pyenv/pyenv
    pyenv install 3.6.0
    pyenv virtualenv 3.6.0 fma
    pyenv activate fma
    
    # with https://pipenv.pypa.io
    pipenv --python 3.6
    pipenv shell
    
    # with https://docs.python.org/3/tutorial/venv.html
    python3.6 -m venv ./env
    source ./env/bin/activate
  3. Install dependencies.

    pip install --upgrade pip setuptools wheel
    pip install numpy==1.12.1  # workaround resampy's bogus setup.py
    pip install -r requirements.txt

    Note: you may need to install ffmpeg or graphviz depending on your usage.
    Note: install CUDA to train neural networks on GPUs (see Tensorflow's instructions).

  4. Download some data, verify its integrity, and uncompress the archives.

    cd data
    
    curl -O https://os.unil.cloud.switch.ch/fma/fma_metadata.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_small.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_medium.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_large.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_full.zip
    
    echo "f0df49ffe5f2a6008d7dc83c6915b31835dfe733  fma_metadata.zip" | sha1sum -c -
    echo "ade154f733639d52e35e32f5593efe5be76c6d70  fma_small.zip"    | sha1sum -c -
    echo "c67b69ea232021025fca9231fc1c7c1a063ab50b  fma_medium.zip"   | sha1sum -c -
    echo "497109f4dd721066b5ce5e5f250ec604dc78939e  fma_large.zip"    | sha1sum -c -
    echo "0f0ace23fbe9ba30ecb7e95f763e435ea802b8ab  fma_full.zip"     | sha1sum -c -
    
    unzip fma_metadata.zip
    unzip fma_small.zip
    unzip fma_medium.zip
    unzip fma_large.zip
    unzip fma_full.zip
    
    cd ..

    Note: try 7zip if decompression errors. It might be an unsupported compression issue.

  5. Fill a .env configuration file (at repository's root) with the following content.

    AUDIO_DIR=./data/fma_small/  # the path to a decompressed fma_*.zip
    FMA_KEY=MYKEY  # only if you want to query the freemusicarchive.org API
    
  6. Open Jupyter or run a notebook.

    jupyter notebook
    make usage.ipynb

Impact, coverage, and resources

100+ research papers

Full list on Google Scholar. Some picks below.

2 derived works
~10 posts
5 events
~10 dataset lists

Contributing

Contribute by opening an issue or a pull request. Let this repository be a hub around the dataset!

History

2017-05-09 pre-publication release

  • paper: arXiv:1612.01840v2
  • code: git tag rc1
  • fma_metadata.zip sha1: f0df49ffe5f2a6008d7dc83c6915b31835dfe733
  • fma_small.zip sha1: ade154f733639d52e35e32f5593efe5be76c6d70
  • fma_medium.zip sha1: c67b69ea232021025fca9231fc1c7c1a063ab50b
  • fma_large.zip sha1: 497109f4dd721066b5ce5e5f250ec604dc78939e
  • fma_full.zip sha1: 0f0ace23fbe9ba30ecb7e95f763e435ea802b8ab
  • known issues: see #41

2016-12-06 beta release

  • paper: arXiv:1612.01840v1
  • code: git tag beta
  • fma_small.zip sha1: e731a5d56a5625f7b7f770923ee32922374e2cbf
  • fma_medium.zip sha1: fe23d6f2a400821ed1271ded6bcd530b7a8ea551

Acknowledgments and Licenses

We are grateful to the Swiss Data Science Center (EPFL and ETHZ) for hosting the dataset.

Please cite our work if you use our code or data.

@inproceedings{fma_dataset,
  title = {{FMA}: A Dataset for Music Analysis},
  author = {Defferrard, Micha\"el and Benzi, Kirell and Vandergheynst, Pierre and Bresson, Xavier},
  booktitle = {18th International Society for Music Information Retrieval Conference (ISMIR)},
  year = {2017},
  archiveprefix = {arXiv},
  eprint = {1612.01840},
  url = {https://arxiv.org/abs/1612.01840},
}
@inproceedings{fma_challenge,
  title = {Learning to Recognize Musical Genre from Audio},
  subtitle = {Challenge Overview},
  author = {Defferrard, Micha\"el and Mohanty, Sharada P. and Carroll, Sean F. and Salath\'e, Marcel},
  booktitle = {The 2018 Web Conference Companion},
  year = {2018},
  publisher = {ACM Press},
  isbn = {9781450356404},
  doi = {10.1145/3184558.3192310},
  archiveprefix = {arXiv},
  eprint = {1803.05337},
  url = {https://arxiv.org/abs/1803.05337},
}
Owner
Michaël Defferrard
Research on machine learning and graphs. Open science, source, data.
Michaël Defferrard
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
Implementation of ViViT: A Video Vision Transformer

ViViT: A Video Vision Transformer Unofficial implementation of ViViT: A Video Vision Transformer. Notes: This is in WIP. Model 2 is implemented, Model

Rishikesh (ऋषिकेश) 297 Jan 06, 2023
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022