FMA: A Dataset For Music Analysis

Overview

FMA: A Dataset For Music Analysis

Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson.
International Society for Music Information Retrieval Conference (ISMIR), 2017.

We introduce the Free Music Archive (FMA), an open and easily accessible dataset suitable for evaluating several tasks in MIR, a field concerned with browsing, searching, and organizing large music collections. The community's growing interest in feature and end-to-end learning is however restrained by the limited availability of large audio datasets. The FMA aims to overcome this hurdle by providing 917 GiB and 343 days of Creative Commons-licensed audio from 106,574 tracks from 16,341 artists and 14,854 albums, arranged in a hierarchical taxonomy of 161 genres. It provides full-length and high-quality audio, pre-computed features, together with track- and user-level metadata, tags, and free-form text such as biographies. We here describe the dataset and how it was created, propose a train/validation/test split and three subsets, discuss some suitable MIR tasks, and evaluate some baselines for genre recognition. Code, data, and usage examples are available at https://github.com/mdeff/fma.

Data

All metadata and features for all tracks are distributed in fma_metadata.zip (342 MiB). The below tables can be used with pandas or any other data analysis tool. See the paper or the usage.ipynb notebook for a description.

  • tracks.csv: per track metadata such as ID, title, artist, genres, tags and play counts, for all 106,574 tracks.
  • genres.csv: all 163 genres with name and parent (used to infer the genre hierarchy and top-level genres).
  • features.csv: common features extracted with librosa.
  • echonest.csv: audio features provided by Echonest (now Spotify) for a subset of 13,129 tracks.

Then, you got various sizes of MP3-encoded audio data:

  1. fma_small.zip: 8,000 tracks of 30s, 8 balanced genres (GTZAN-like) (7.2 GiB)
  2. fma_medium.zip: 25,000 tracks of 30s, 16 unbalanced genres (22 GiB)
  3. fma_large.zip: 106,574 tracks of 30s, 161 unbalanced genres (93 GiB)
  4. fma_full.zip: 106,574 untrimmed tracks, 161 unbalanced genres (879 GiB)

See the wiki (or #41) for known issues (errata).

Code

The following notebooks, scripts, and modules have been developed for the dataset.

  1. usage.ipynb: shows how to load the datasets and develop, train, and test your own models with it.
  2. analysis.ipynb: exploration of the metadata, data, and features. Creates the figures used in the paper.
  3. baselines.ipynb: baseline models for genre recognition, both from audio and features.
  4. features.py: features extraction from the audio (used to create features.csv).
  5. webapi.ipynb: query the web API of the FMA. Can be used to update the dataset.
  6. creation.ipynb: creation of the dataset (used to create tracks.csv and genres.csv).
  7. creation.py: creation of the dataset (long-running data collection and processing).
  8. utils.py: helper functions and classes.

Usage

Binder   Click the binder badge to play with the code and data from your browser without installing anything.

  1. Clone the repository.

    git clone https://github.com/mdeff/fma.git
    cd fma
  2. Create a Python 3.6 environment.
    # with https://conda.io
    conda create -n fma python=3.6
    conda activate fma
    
    # with https://github.com/pyenv/pyenv
    pyenv install 3.6.0
    pyenv virtualenv 3.6.0 fma
    pyenv activate fma
    
    # with https://pipenv.pypa.io
    pipenv --python 3.6
    pipenv shell
    
    # with https://docs.python.org/3/tutorial/venv.html
    python3.6 -m venv ./env
    source ./env/bin/activate
  3. Install dependencies.

    pip install --upgrade pip setuptools wheel
    pip install numpy==1.12.1  # workaround resampy's bogus setup.py
    pip install -r requirements.txt

    Note: you may need to install ffmpeg or graphviz depending on your usage.
    Note: install CUDA to train neural networks on GPUs (see Tensorflow's instructions).

  4. Download some data, verify its integrity, and uncompress the archives.

    cd data
    
    curl -O https://os.unil.cloud.switch.ch/fma/fma_metadata.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_small.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_medium.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_large.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_full.zip
    
    echo "f0df49ffe5f2a6008d7dc83c6915b31835dfe733  fma_metadata.zip" | sha1sum -c -
    echo "ade154f733639d52e35e32f5593efe5be76c6d70  fma_small.zip"    | sha1sum -c -
    echo "c67b69ea232021025fca9231fc1c7c1a063ab50b  fma_medium.zip"   | sha1sum -c -
    echo "497109f4dd721066b5ce5e5f250ec604dc78939e  fma_large.zip"    | sha1sum -c -
    echo "0f0ace23fbe9ba30ecb7e95f763e435ea802b8ab  fma_full.zip"     | sha1sum -c -
    
    unzip fma_metadata.zip
    unzip fma_small.zip
    unzip fma_medium.zip
    unzip fma_large.zip
    unzip fma_full.zip
    
    cd ..

    Note: try 7zip if decompression errors. It might be an unsupported compression issue.

  5. Fill a .env configuration file (at repository's root) with the following content.

    AUDIO_DIR=./data/fma_small/  # the path to a decompressed fma_*.zip
    FMA_KEY=MYKEY  # only if you want to query the freemusicarchive.org API
    
  6. Open Jupyter or run a notebook.

    jupyter notebook
    make usage.ipynb

Impact, coverage, and resources

100+ research papers

Full list on Google Scholar. Some picks below.

2 derived works
~10 posts
5 events
~10 dataset lists

Contributing

Contribute by opening an issue or a pull request. Let this repository be a hub around the dataset!

History

2017-05-09 pre-publication release

  • paper: arXiv:1612.01840v2
  • code: git tag rc1
  • fma_metadata.zip sha1: f0df49ffe5f2a6008d7dc83c6915b31835dfe733
  • fma_small.zip sha1: ade154f733639d52e35e32f5593efe5be76c6d70
  • fma_medium.zip sha1: c67b69ea232021025fca9231fc1c7c1a063ab50b
  • fma_large.zip sha1: 497109f4dd721066b5ce5e5f250ec604dc78939e
  • fma_full.zip sha1: 0f0ace23fbe9ba30ecb7e95f763e435ea802b8ab
  • known issues: see #41

2016-12-06 beta release

  • paper: arXiv:1612.01840v1
  • code: git tag beta
  • fma_small.zip sha1: e731a5d56a5625f7b7f770923ee32922374e2cbf
  • fma_medium.zip sha1: fe23d6f2a400821ed1271ded6bcd530b7a8ea551

Acknowledgments and Licenses

We are grateful to the Swiss Data Science Center (EPFL and ETHZ) for hosting the dataset.

Please cite our work if you use our code or data.

@inproceedings{fma_dataset,
  title = {{FMA}: A Dataset for Music Analysis},
  author = {Defferrard, Micha\"el and Benzi, Kirell and Vandergheynst, Pierre and Bresson, Xavier},
  booktitle = {18th International Society for Music Information Retrieval Conference (ISMIR)},
  year = {2017},
  archiveprefix = {arXiv},
  eprint = {1612.01840},
  url = {https://arxiv.org/abs/1612.01840},
}
@inproceedings{fma_challenge,
  title = {Learning to Recognize Musical Genre from Audio},
  subtitle = {Challenge Overview},
  author = {Defferrard, Micha\"el and Mohanty, Sharada P. and Carroll, Sean F. and Salath\'e, Marcel},
  booktitle = {The 2018 Web Conference Companion},
  year = {2018},
  publisher = {ACM Press},
  isbn = {9781450356404},
  doi = {10.1145/3184558.3192310},
  archiveprefix = {arXiv},
  eprint = {1803.05337},
  url = {https://arxiv.org/abs/1803.05337},
}
Owner
Michaël Defferrard
Research on machine learning and graphs. Open science, source, data.
Michaël Defferrard
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
Lightweight plotting to the terminal. 4x resolution via Unicode.

Uniplot Lightweight plotting to the terminal. 4x resolution via Unicode. When working with production data science code it can be handy to have plotti

Olav Stetter 203 Dec 29, 2022
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
GenshinMapAutoMarkTools - Tools To add/delete/refresh resources mark in Genshin Impact Map

使用说明 适配 windows7以上 64位 原神1920x1080窗口(其他分辨率后续适配) 待更新渊下宫 English version is to be

Zero_Circle 209 Dec 28, 2022
tree-math: mathematical operations for JAX pytrees

tree-math: mathematical operations for JAX pytrees tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterati

Google 137 Dec 28, 2022
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Vansh Wassan 15 Jun 17, 2021
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet 中文版 Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022