Efficient 3D Backbone Network for Temporal Modeling

Overview

VoV3D

report PWC
VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast.

Diverse Temporal Aggregation and Depthwise Spatiotemporal Factorization for Efficient Video Classification
Youngwan Lee, Hyung-Il Kim, Kimin Yun, and Jinyoung Moon
Electronics and Telecommunications Research Institute (ETRI)
pre-print : https://arxiv.org/abs/2012.00317

Abstract

Video classification researches that have recently attracted attention are the fields of temporal modeling and 3D efficient architecture. However, the temporal modeling methods are not efficient or the 3D efficient architecture is less interested in temporal modeling. For bridging the gap between them, we propose an efficient temporal modeling 3D architecture, called VoV3D, that consists of a temporal one-shot aggregation (T-OSA) module and depthwise factorized component, D(2+1)D. The T-OSA is devised to build a feature hierarchy by aggregating temporal features with different temporal receptive fields. Stacking this T-OSA enables the network itself to model short-range as well as long-range temporal relationships across frames without any external modules. Inspired by kernel factorization and channel factorization, we also design a depthwise spatiotemporal factorization module, named, D(2+1)D that decomposes a 3D depthwise convolution into two spatial and temporal depthwise convolutions for making our network more lightweight and efficient. By using the proposed temporal modeling method (T-OSA), and the efficient factorized component (D(2+1)D), we construct two types of VoV3D networks, VoV3D-M and VoV3D-L. Thanks to its efficiency and effectiveness of temporal modeling, VoV3D-L has 6x fewer model parameters and 16x less computation, surpassing a state-of-the-art temporal modeling method on both Something-Something and Kinetics-400. Furthermore, VoV3D shows better temporal modeling ability than a state-of-the-art efficient 3D architecture, X3D having comparable model capacity. We hope that VoV3D can serve as a baseline for efficient video classification.

Main Result

Our results (X3D & VoV3D) are trained in the same environment.

  • V100 8 GPU machine
  • same training protocols (BASE_LR, LR_POLICY, batch size, etc)
  • pytorch 1.6
  • CUDA 10.1

*Please refer to our paper or configs files for the details.
*When you want to reproduce the same results, you just train the model with configs on the 8 GPU machine. If you change NUM_GPUS or TRAIN.BATCH_SIZE values, you have to adjust BASE_LR.
*IM and K-400 denote ImageNet and Kinetics-400, respectively.

Something-Something-V1

Model Backbone Pretrain #Frame Param. GFLOPs Top-1 Top-5 weight
TSM R-50 K-400 16 24.3M 33x6 48.3 78.1 link
TSM+TPN R-50 IM 8 N/A N/A 50.7 - link
TEA R-50 IM 16 24.4M 70x30 52.3 81.9 -
ip-CSN-152 - - 32 29.7M 74.0x10 49.3 - -
X3D M - 16 3.3M 6.1x6 46.4 75.3 link
VoV3D M - 16 3.3M 5.7x6 48.1 76.9 link
VoV3D M - 32 3.3M 11.5x6 49.8 78.0 link
VoV3D M K-400 32 3.3M 11.5x6 52.6 80.4 link
X3D L - 16 5.6M 9.1x6 47.0 76.4 link
VoV3D L - 16 5.8M 9.3x6 49.5 78.0 link
VoV3D L - 32 5.8M 20.9x6 50.6 78.7 link
VoV3D L K-400 32 5.8M 20.9x6 54.9 82.3 link

Something-Something-V2

Model Backbone Pretrain #Frame Param. GFLOPs Top-1 Top-5 weight
TSM R-50 K-400 16 24.3M 33x6 63.0 88.1 link
TSM+TPN R-50 IM 8 N/A N/A 64.7 - link
TEA R-50 IM 16 24.4M 70x30 65.1 89.9 -
SlowFast 16x8 R-50 K-400 64 34.0M 131.4x6 63.9 88.2 link
X3D M - 16 3.3M 6.1x6 63.0 87.9 link
VoV3D M - 16 3.3M 5.7x6 63.2 88.2 link
VoV3D M - 32 3.3M 11.5x6 64.2 88.8 link
VoV3D M K-400 32 3.3M 11.5x6 65.2 89.4 link
X3D L - 16 5.6M 9.1x6 62.7 87.7 link
VoV3D L - 16 5.8M 9.3x6 64.1 88.6 link
VoV3D L - 32 5.8M 20.9x6 65.8 89.5 link
VoV3D L K-400 32 5.8M 20.9x6 67.3 90.5 link

Kinetics-400

Model Backbone Pretrain #Frame Param. GFLOPs Top-1 Top-5 weight
X3D (PySlowFast, 300e) M - 16 3.8M 6.2x30 76.0 92.3 link
X3D (our, 256e) M - 16 3.8M 6.2x30 75.0 92.1 link
VoV3D M - 16 3.8M 4.4x30 73.9 91.6 link
X3D (PySlowfast) L - 16 6.1M 24.8x30 77.5 92.9 link
VoV3D L - 16 6.2M 9.3x30 76.3 92.9 link

*We note that since X3D-M (PySlowFast) was trained for 300 epochs, we re-train the X3D-M (our, 256e) with the same 256 epochs with VoV3D-M.

Installation & Data Preparation

Please refer to INSTALL.md for installation and DATA.md for data preparation.
Important : We used depthwise 3D Conv pytorch patch for accelearating GPU runtime.

Training & Evaluation

We provide brief examples for getting started. If you want to know more details, please refer to instruction of PySlowFast.

Training

from scratch

  • VoV3D-L on Kinetics-400
python tools/run_net.py \
  --cfg configs/Kinetics/vov3d/vov3d_L.yaml \
  DATA.PATH_TO_DATA_DIR path/to/your/kinetics \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 64

You can also designate each argument in the config file. If you want to train with our default setting (e.g., 8GPUs, 64 batch size, etc), you just use this command. (Set DATA.PATH_TO_DATA_DIR with your real data path)

python tools/run_net.py --cfg configs/Kinetics/vov3d/vov3d_L.yaml
  • VoV3D-L on Something-Something-V1
python tools/run_net.py \
  --cfg configs/SSv1/vov3d/vov3d_L_F16.yaml \
  DATA.PATH_TO_DATA_DIR path/to/your/ssv1 \ 
  DATA.PATH_PREFIX path/to/your/ssv1

Finetuning by using Kinetics-400 pretrained weight.

First, you have to download the weights pretrained on Kinetics-400.

One thing you should keep in mind is that TRAIN.CHECKPOINT_FILE_PATH is the downloaded weight.

For Something-Something-V2,

cd VoV3D
mkdir -p output/pretrained
wget https://dl.dropbox.com/s/lzmq8d4dqyj8fj6/vov3d_L_k400.pth

python tools/run_net.py \
  --cfg configs/SSv2/vov3d/finetune/vov3d_L_F16.yaml \
  TRAIN.CHECKPOINT_FILE_PATH path/to/the/pretrained/vov3d_L_k400.pth \
  DATA.PATH_TO_DATA_DIR path/to/your/ssv2 \
  DATA.PATH_PREFIX path/to/your/ssv2

Testing

When testing, you have to set TRAIN.ENABLE to False and TEST.CHECKPOINT_FILE_PATH to path/to/your/checkpoint.

python tools/run_net.py \
  --cfg configs/Kinetics/vov3d/vov3d_L.yaml \
  TRAIN.ENABLE False \
  TEST.CHECKPOINT_FILE_PATH path_to_your_checkpoint

If you want to test with single clip and single-crop, set TEST.NUM_ENSEMBLE_VIEWS and TEST.NUM_SPATIAL_CROPS to 1, respectively.

python tools/run_net.py \
  --cfg configs/Kinetics/vov3d/vov3d_L.yaml \
  TRAIN.ENABLE False \
  TEST.CHECKPOINT_FILE_PATH path_to_your_checkpoint \
  TEST.NUM_ENSEMBLE_VIEWS 1 \
  TEST.NUM_SPATIAL_CROPS 1

For Kinetics-400, 30-views : TEST.NUM_ENSEMBLE_VIEWS 10 & TEST.NUM_SPATIAL_CROPS 3
For Something-Something, 6-views : TEST.NUM_ENSEMBLE_VIEWS 2 & TEST.NUM_SPATIAL_CROPS 3

License

The code and the models in this repo are released under the CC-BY-NC4.0 LICENSE. See the LICENSE file.

Citing VoV3D

@article{lee2020vov3d,
  title={Diverse Temporal Aggregation and Depthwise Spatiotemporal Factorization for Efficient Video Classification},
  author={Lee, Youngwan and Kim, Hyung-Il and Yun, Kimin and Moon, Jinyoung},
  journal={arXiv preprint arXiv:2012.00317},
  year={2020}
}

@inproceedings{lee2019energy,
  title = {An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection},
  author = {Lee, Youngwan and Hwang, Joong-won and Lee, Sangrok and Bae, Yuseok and Park, Jongyoul},
  booktitle = {CVPR Workshop},
  year = {2019}
}

@inproceedings{lee2020centermask,
  title={CenterMask: Real-Time Anchor-Free Instance Segmentation},
  author={Lee, Youngwan and Park, Jongyoul},
  booktitle={CVPR},
  year={2020}
}

Acknowledgement

We appreciate developers of PySlowFast for such wonderful framework.
This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. B0101-15-0266, Development of High Performance Visual BigData Discovery Platform for Large-Scale Realtime Data Analysis and No. 2020-0-00004, Development of Previsional Intelligence based on Long-term Visual Memory Network).

StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
My implementation of DeepMind's Perceiver

DeepMind Perceiver (in PyTorch) Disclaimer: This is not official and I'm not affiliated with DeepMind. My implementation of the Perceiver: General Per

Louis Arge 55 Dec 12, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
a reimplementation of Holistically-Nested Edge Detection in PyTorch

pytorch-hed This is a personal reimplementation of Holistically-Nested Edge Detection [1] using PyTorch. Should you be making use of this work, please

Simon Niklaus 375 Dec 06, 2022
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
python 93% acc. CNN Dogs Vs Cats ( Pytorch )

English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于

apple ye 1 May 22, 2022
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
Alex Pashevich 62 Dec 24, 2022
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022
Online-compatible Unsupervised Non-resonant Anomaly Detection Repository

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository Repository containing all scripts used in the studies of Online-compatible Un

0 Nov 09, 2021
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023