DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Overview

NVIDIA Source Code License Python 3.8

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Paper | Project page | Demo (Youtube) | Demo (Bilibili)

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.
Shiyi Lan, Zhiding Yu, Chris Choy, Subhashree Radhakrishnan, Guilin Liu, Yuke Zhu, Larry Davis, Anima Anandkumar
International Conference on Computer Vision (ICCV) 2021

This repository contains the official Pytorch implementation of training & evaluation code and pretrained models for DiscoBox. DiscoBox is a state of the art framework that can jointly predict high quality instance segmentation and semantic correspondence from box annotations.

We use MMDetection v2.10.0 as the codebase.

All of our models are trained and tested using automatic mixed precision, which leverages float16 for speedup and less GPU memory consumption.

Installation

This implementation is based on PyTorch==1.9.0, mmcv==2.13.0, and mmdetection==2.10.0

Please refer to get_started.md for installation.

Or you can download the docker image from our dockerhub repository.

Models

Results on COCO val 2017

Backbone Weights AP [email protected] [email protected] [email protected] [email protected] [email protected]
ResNet-50 download 30.7 52.6 30.6 13.3 34.1 45.6
ResNet-101-DCN download 35.3 59.1 35.4 16.9 39.2 53.0
ResNeXt-101-DCN download 37.3 60.4 39.1 17.8 41.1 55.4

Results on COCO test-dev

We also evaluate the models in the section Results on COCO val 2017 with the same weights on COCO test-dev.

Backbone Weights AP [email protected] [email protected] [email protected] [email protected] [email protected]
ResNet-50 download 32.0 53.6 32.6 11.7 33.7 48.4
ResNet-101-DCN download 35.8 59.8 36.4 16.9 38.7 52.1
ResNeXt-101-DCN download 37.9 61.4 40.0 18.0 41.1 53.9

Training

COCO

ResNet-50 (8 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_r50_fpn_3x.py 8

ResNet-101-DCN (8 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_r101_dcn_fpn_3x.py 8

ResNeXt-101-DCN (8 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_x101_dcn_fpn_3x.py 8

Pascal VOC 2012

ResNet-50 (4 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_voc_r50_fpn_6x.py 4

ResNet-101 (4 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_voc_r101_fpn_6x.py 4

Testing

COCO

ResNet-50 (8 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_r50_fpn_3x.py \
     work_dirs/coco_r50_fpn_3x.pth 8 --eval segm

ResNet-101-DCN (8 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_r101_dcn_fpn_3x.py \
     work_dirs/coco_r101_dcn_fpn_3x.pth 8 --eval segm

ResNeXt-101-DCN (GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_x101_dcn_fpn_3x_fp16.py \
     work_dirs/coco_x101_dcn_fpn_3x.pth 8 --eval segm

Pascal VOC 2012 (COCO API)

ResNet-50 (4 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_voc_r50_fpn_3x_fp16.py \
     work_dirs/voc_r50_6x.pth 4 --eval segm

ResNet-101 (4 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_voc_r101_fpn_3x_fp16.py \
     work_dirs/voc_r101_6x.pth 4 --eval segm

Pascal VOC 2012 (Matlab)

Step 1: generate results

ResNet-50 (4 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_voc_r50_fpn_3x_fp16.py \
     work_dirs/voc_r50_6x.pth 4 \
     --format-only \
     --options "jsonfile_prefix=work_dirs/voc_r50_results.json"

ResNet-101 (4 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_voc_r101_fpn_3x_fp16.py \
     work_dirs/voc_r101_6x.pth 4 \
     --format-only \
     --options "jsonfile_prefix=work_dirs/voc_r101_results.json"

Step 2: format conversion

ResNet-50:

python tools/json2mat.pywork_dirs/voc_r50_results.json work_dirs/voc_r50_results.mat

ResNet-101:

python tools/json2mat.pywork_dirs/voc_r101_results.json work_dirs/voc_r101_results.mat

Step 3: evaluation

Please visit BBTP for the evaluation code written in Matlab.

PF-Pascal

Please visit this repository.

LICENSE

Please check the LICENSE file. DiscoBox may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [email protected].

Citation

@article{lan2021discobox,
  title={DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision},
  author={Lan, Shiyi and Yu, Zhiding and Choy, Christopher and Radhakrishnan, Subhashree and Liu, Guilin and Zhu, Yuke and Davis, Larry S and Anandkumar, Anima},
  journal={arXiv preprint arXiv:2105.06464},
  year={2021}
}
Owner
Shiyi Lan
PhD Candidate. Research Interests: Object Detection, Instance segmentation, 3D Object Detection, 3D vehicle trajectory, Weakly/Semi-supervised learning
Shiyi Lan
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Jiezhang Cao 225 Nov 13, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
In Search of Probeable Generalization Measures

In Search of Probeable Generalization Measures Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Co

Mahdi S. Hosseini 6 Sep 11, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f

Bobo Xi 7 Nov 03, 2022
darija <-> english dictionary

darija-dictionary Having advanced IT solutions that are well adapted to the Moroccan context passes inevitably through understanding Moroccan dialect.

DODa 102 Jan 01, 2023
FewBit — a library for memory efficient training of large neural networks

FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back

24 Oct 22, 2022