SEJE Pytorch implementation

Related tags

Deep LearningSEJE
Overview

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

Contents

  1. Instroduction
  2. Installation
  3. Recipe1M Dataset
  4. Vision models
  5. Out-of-the-box training
  6. Training
  7. Testing
  8. Contact

Introduction

Overview: SEJE is a two-phase deep feature engineering framework for efficient learning of semantics enhanced joint embedding, which clearly separates the deep feature engineering in data preprocessing from training the text-image joint embedding model. We use the Recipe1M dataset for the technical description and empirical validation. In preprocessing, we perform deep feature engineering by combining deep feature engineering with semantic context features derived from raw text-image input data. We leverage LSTM to identify key terms, deep NLP models from the BERT family, TextRank, or TF-IDF to produce ranking scores for key terms before generating the vector representation for each key term by using word2vec. We leverage wideResNet50 and word2vec to extract and encode the image category semantics of food images to help semantic alignment of the learned recipe and image embeddings in the joint latent space. In joint embedding learning, we perform deep feature engineering by optimizing the batch-hard triplet loss function with soft-margin and double negative sampling, taking into account also the category-based alignment loss and discriminator-based alignment loss. Extensive experiments demonstrate that our SEJE approach with deep feature engineering significantly outperforms the state-of-the-art approaches.

SEJE Architecture

SEJE Phase I Architecture and Examples

SEJE Phase II Architecture

SEJE Joint Embedding Optimization with instance-class double hard sampling strategy

SEJE Joint Embedding Optimization with discriminator based alignment loss regularization

SEJE Experimental Evaluation Highlights

Installation

We use the environment with Python 3.7.6 and Pytorch 1.4.0. Run pip install --upgrade cython and then install the dependencies with pip install -r requirements.txt. Our work is an extension of im2recipe.

Recipe1M Dataset

The Recipe1M dataset is available for download here, where you can find some code used to construct the dataset and get the structured recipe text, food images, pre-trained instruction featuers and so on.

Vision models

This current version of the code uses a pre-trained ResNet-50.

Out-of-the-box training

To train the model, you will need to create following files:

  • data/train_lmdb: LMDB (training) containing skip-instructions vectors, ingredient ids and categories.
  • data/train_keys: pickle (training) file containing skip-instructions vectors, ingredient ids and categories.
  • data/val_lmdb: LMDB (validation) containing skip-instructions vectors, ingredient ids and categories.
  • data/val_keys: pickle (validation) file containing skip-instructions vectors, ingredient ids and categories.
  • data/test_lmdb: LMDB (testing) containing skip-instructions vectors, ingredient ids and categories.
  • data/test_keys: pickle (testing) file containing skip-instructions vectors, ingredient ids and categories.
  • data/text/vocab.txt: file containing all the vocabulary found within the recipes.

Recipe1M LMDBs and pickle files can be found in train.tar, val.tar and test.tar. here

It is worth mentioning that the code is expecting images to be located in a four-level folder structure, e.g. image named 0fa8309c13.jpg can be found in ./data/images/0/f/a/8/0fa8309c13.jpg. Each one of the Tar files contains the first folder level, 16 in total.

The pre-trained TFIDF vectors for each recipe, image category feature for each image and the optimized category label for each image-recipe pair can be found in id2tfidf_vec.pkl, id2img_101_cls_vec.pkl and id2class_1005.pkl respectively.

Word2Vec

Training word2vec with recipe data:

  • Download and compile word2vec
  • Train with:
./word2vec -hs 1 -negative 0 -window 10 -cbow 0 -iter 10 -size 300 -binary 1 -min-count 10 -threads 20 -train tokenized_text.txt -output vocab.bin

The pre-trained word2vec model can be found in vocab.bin.

Training

  • Train the model with:
CUDA_VISIBLE_DEVICES=0 python train.py 

We did the experiments with batch size 100, which takes about 11 GB memory.

Testing

  • Test the trained model with
CUDA_VISIBLE_DEVICES=0 python test.py
  • The results will be saved in results, which include the MedR result and recall scores for the recipe-to-image retrieval and image-to-recipe retrieval.
  • Our best model trained with Recipe1M (TSC paper) can be downloaded here.

Contact

We are continuing the development and there is ongoing work in our lab regarding cross-modal retrieval between cooking recipes and food images. For any questions or suggestions you can use the issues section or reach us at [email protected].

Lead Developer: Zhongwei Xie, Georgia Institute of Technology

Advisor: Prof. Dr. Ling Liu, Georgia Institute of Technology

If you use our code, please cite

[1] Zhongwei Xie, Ling Liu, Yanzhao Wu, et al. Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering[J]//ACM Transactions on Information Systems (TOIS).

[2] Zhongwei Xie, Ling Liu, Lin Li, et al. Efficient Deep Feature Calibration for Cross-Modal Joint Embedding Learning[C]//Proceedings of the 2021 International Conference on Multimodal Interaction. 2021: 43-51.

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
Robust Lane Detection via Expanded Self Attention (WACV 2022)

Robust Lane Detection via Expanded Self Attention (WACV 2022) Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim, Sangwon Hwang, Sangyoun Lee Overvie

Min Hyeok Lee 18 Nov 12, 2022
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"

Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W

50 Dec 11, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023
Towards Multi-Camera 3D Human Pose Estimation in Wild Environment

PanopticStudio Toolbox This repository has a toolbox to download, process, and visualize the Panoptic Studio (Panoptic) data. Note: Sep-21-2020: Curre

335 Jan 09, 2023
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.

Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc

Matt Cooper 704 Nov 26, 2022
Godot RL Agents is a fully Open Source packages that allows video game creators

Godot RL Agents The Godot RL Agents is a fully Open Source packages that allows video game creators, AI researchers and hobbiest the opportunity to le

Edward Beeching 326 Dec 30, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our

BMW TechOffice MUNICH 626 Dec 31, 2022