SEJE Pytorch implementation

Related tags

Deep LearningSEJE
Overview

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

Contents

  1. Instroduction
  2. Installation
  3. Recipe1M Dataset
  4. Vision models
  5. Out-of-the-box training
  6. Training
  7. Testing
  8. Contact

Introduction

Overview: SEJE is a two-phase deep feature engineering framework for efficient learning of semantics enhanced joint embedding, which clearly separates the deep feature engineering in data preprocessing from training the text-image joint embedding model. We use the Recipe1M dataset for the technical description and empirical validation. In preprocessing, we perform deep feature engineering by combining deep feature engineering with semantic context features derived from raw text-image input data. We leverage LSTM to identify key terms, deep NLP models from the BERT family, TextRank, or TF-IDF to produce ranking scores for key terms before generating the vector representation for each key term by using word2vec. We leverage wideResNet50 and word2vec to extract and encode the image category semantics of food images to help semantic alignment of the learned recipe and image embeddings in the joint latent space. In joint embedding learning, we perform deep feature engineering by optimizing the batch-hard triplet loss function with soft-margin and double negative sampling, taking into account also the category-based alignment loss and discriminator-based alignment loss. Extensive experiments demonstrate that our SEJE approach with deep feature engineering significantly outperforms the state-of-the-art approaches.

SEJE Architecture

SEJE Phase I Architecture and Examples

SEJE Phase II Architecture

SEJE Joint Embedding Optimization with instance-class double hard sampling strategy

SEJE Joint Embedding Optimization with discriminator based alignment loss regularization

SEJE Experimental Evaluation Highlights

Installation

We use the environment with Python 3.7.6 and Pytorch 1.4.0. Run pip install --upgrade cython and then install the dependencies with pip install -r requirements.txt. Our work is an extension of im2recipe.

Recipe1M Dataset

The Recipe1M dataset is available for download here, where you can find some code used to construct the dataset and get the structured recipe text, food images, pre-trained instruction featuers and so on.

Vision models

This current version of the code uses a pre-trained ResNet-50.

Out-of-the-box training

To train the model, you will need to create following files:

  • data/train_lmdb: LMDB (training) containing skip-instructions vectors, ingredient ids and categories.
  • data/train_keys: pickle (training) file containing skip-instructions vectors, ingredient ids and categories.
  • data/val_lmdb: LMDB (validation) containing skip-instructions vectors, ingredient ids and categories.
  • data/val_keys: pickle (validation) file containing skip-instructions vectors, ingredient ids and categories.
  • data/test_lmdb: LMDB (testing) containing skip-instructions vectors, ingredient ids and categories.
  • data/test_keys: pickle (testing) file containing skip-instructions vectors, ingredient ids and categories.
  • data/text/vocab.txt: file containing all the vocabulary found within the recipes.

Recipe1M LMDBs and pickle files can be found in train.tar, val.tar and test.tar. here

It is worth mentioning that the code is expecting images to be located in a four-level folder structure, e.g. image named 0fa8309c13.jpg can be found in ./data/images/0/f/a/8/0fa8309c13.jpg. Each one of the Tar files contains the first folder level, 16 in total.

The pre-trained TFIDF vectors for each recipe, image category feature for each image and the optimized category label for each image-recipe pair can be found in id2tfidf_vec.pkl, id2img_101_cls_vec.pkl and id2class_1005.pkl respectively.

Word2Vec

Training word2vec with recipe data:

  • Download and compile word2vec
  • Train with:
./word2vec -hs 1 -negative 0 -window 10 -cbow 0 -iter 10 -size 300 -binary 1 -min-count 10 -threads 20 -train tokenized_text.txt -output vocab.bin

The pre-trained word2vec model can be found in vocab.bin.

Training

  • Train the model with:
CUDA_VISIBLE_DEVICES=0 python train.py 

We did the experiments with batch size 100, which takes about 11 GB memory.

Testing

  • Test the trained model with
CUDA_VISIBLE_DEVICES=0 python test.py
  • The results will be saved in results, which include the MedR result and recall scores for the recipe-to-image retrieval and image-to-recipe retrieval.
  • Our best model trained with Recipe1M (TSC paper) can be downloaded here.

Contact

We are continuing the development and there is ongoing work in our lab regarding cross-modal retrieval between cooking recipes and food images. For any questions or suggestions you can use the issues section or reach us at [email protected].

Lead Developer: Zhongwei Xie, Georgia Institute of Technology

Advisor: Prof. Dr. Ling Liu, Georgia Institute of Technology

If you use our code, please cite

[1] Zhongwei Xie, Ling Liu, Yanzhao Wu, et al. Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering[J]//ACM Transactions on Information Systems (TOIS).

[2] Zhongwei Xie, Ling Liu, Lin Li, et al. Efficient Deep Feature Calibration for Cross-Modal Joint Embedding Learning[C]//Proceedings of the 2021 International Conference on Multimodal Interaction. 2021: 43-51.

Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
RLHive: a framework designed to facilitate research in reinforcement learning.

RLHive is a framework designed to facilitate research in reinforcement learning. It provides the components necessary to run a full RL experiment, for both single agent and multi agent environments.

88 Jan 05, 2023
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

James Oldfield 4 Jun 17, 2022
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning This is the official repository for Conservative and Adaptive Penalty fo

7 Nov 22, 2022
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
Deep Residual Learning for Image Recognition

Deep Residual Learning for Image Recognition This is a Torch implementation of "Deep Residual Learning for Image Recognition",Kaiming He, Xiangyu Zhan

Kimmy 561 Dec 01, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022