SEJE Pytorch implementation

Related tags

Deep LearningSEJE
Overview

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

Contents

  1. Instroduction
  2. Installation
  3. Recipe1M Dataset
  4. Vision models
  5. Out-of-the-box training
  6. Training
  7. Testing
  8. Contact

Introduction

Overview: SEJE is a two-phase deep feature engineering framework for efficient learning of semantics enhanced joint embedding, which clearly separates the deep feature engineering in data preprocessing from training the text-image joint embedding model. We use the Recipe1M dataset for the technical description and empirical validation. In preprocessing, we perform deep feature engineering by combining deep feature engineering with semantic context features derived from raw text-image input data. We leverage LSTM to identify key terms, deep NLP models from the BERT family, TextRank, or TF-IDF to produce ranking scores for key terms before generating the vector representation for each key term by using word2vec. We leverage wideResNet50 and word2vec to extract and encode the image category semantics of food images to help semantic alignment of the learned recipe and image embeddings in the joint latent space. In joint embedding learning, we perform deep feature engineering by optimizing the batch-hard triplet loss function with soft-margin and double negative sampling, taking into account also the category-based alignment loss and discriminator-based alignment loss. Extensive experiments demonstrate that our SEJE approach with deep feature engineering significantly outperforms the state-of-the-art approaches.

SEJE Architecture

SEJE Phase I Architecture and Examples

SEJE Phase II Architecture

SEJE Joint Embedding Optimization with instance-class double hard sampling strategy

SEJE Joint Embedding Optimization with discriminator based alignment loss regularization

SEJE Experimental Evaluation Highlights

Installation

We use the environment with Python 3.7.6 and Pytorch 1.4.0. Run pip install --upgrade cython and then install the dependencies with pip install -r requirements.txt. Our work is an extension of im2recipe.

Recipe1M Dataset

The Recipe1M dataset is available for download here, where you can find some code used to construct the dataset and get the structured recipe text, food images, pre-trained instruction featuers and so on.

Vision models

This current version of the code uses a pre-trained ResNet-50.

Out-of-the-box training

To train the model, you will need to create following files:

  • data/train_lmdb: LMDB (training) containing skip-instructions vectors, ingredient ids and categories.
  • data/train_keys: pickle (training) file containing skip-instructions vectors, ingredient ids and categories.
  • data/val_lmdb: LMDB (validation) containing skip-instructions vectors, ingredient ids and categories.
  • data/val_keys: pickle (validation) file containing skip-instructions vectors, ingredient ids and categories.
  • data/test_lmdb: LMDB (testing) containing skip-instructions vectors, ingredient ids and categories.
  • data/test_keys: pickle (testing) file containing skip-instructions vectors, ingredient ids and categories.
  • data/text/vocab.txt: file containing all the vocabulary found within the recipes.

Recipe1M LMDBs and pickle files can be found in train.tar, val.tar and test.tar. here

It is worth mentioning that the code is expecting images to be located in a four-level folder structure, e.g. image named 0fa8309c13.jpg can be found in ./data/images/0/f/a/8/0fa8309c13.jpg. Each one of the Tar files contains the first folder level, 16 in total.

The pre-trained TFIDF vectors for each recipe, image category feature for each image and the optimized category label for each image-recipe pair can be found in id2tfidf_vec.pkl, id2img_101_cls_vec.pkl and id2class_1005.pkl respectively.

Word2Vec

Training word2vec with recipe data:

  • Download and compile word2vec
  • Train with:
./word2vec -hs 1 -negative 0 -window 10 -cbow 0 -iter 10 -size 300 -binary 1 -min-count 10 -threads 20 -train tokenized_text.txt -output vocab.bin

The pre-trained word2vec model can be found in vocab.bin.

Training

  • Train the model with:
CUDA_VISIBLE_DEVICES=0 python train.py 

We did the experiments with batch size 100, which takes about 11 GB memory.

Testing

  • Test the trained model with
CUDA_VISIBLE_DEVICES=0 python test.py
  • The results will be saved in results, which include the MedR result and recall scores for the recipe-to-image retrieval and image-to-recipe retrieval.
  • Our best model trained with Recipe1M (TSC paper) can be downloaded here.

Contact

We are continuing the development and there is ongoing work in our lab regarding cross-modal retrieval between cooking recipes and food images. For any questions or suggestions you can use the issues section or reach us at [email protected].

Lead Developer: Zhongwei Xie, Georgia Institute of Technology

Advisor: Prof. Dr. Ling Liu, Georgia Institute of Technology

If you use our code, please cite

[1] Zhongwei Xie, Ling Liu, Yanzhao Wu, et al. Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering[J]//ACM Transactions on Information Systems (TOIS).

[2] Zhongwei Xie, Ling Liu, Lin Li, et al. Efficient Deep Feature Calibration for Cross-Modal Joint Embedding Learning[C]//Proceedings of the 2021 International Conference on Multimodal Interaction. 2021: 43-51.

Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
Code for unmixing audio signals in four different stems "drums, bass, vocals, others". The code is adapted from "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Disclaimer This code is a based on "Jukebox: A Generative Model for Music" Paper We adju

Wadhah Zai El Amri 24 Dec 29, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch

Next Word Prediction Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch 🎬 Project Demo ✔ Application is hosted on Streamlit. You can see t

Vivek7 3 Aug 26, 2022
Code Repository for The Kaggle Book, Published by Packt Publishing

The Kaggle Book Data analysis and machine learning for competitive data science Code Repository for The Kaggle Book, Published by Packt Publishing "Lu

Packt 1.6k Jan 07, 2023
QuanTaichi evaluation suite

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021) Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, W

Taichi Developers 120 Jan 04, 2023
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
A library for implementing Decentralized Graph Neural Network algorithms.

decentralized-gnn A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. De

Multimedia Knowledge and Social Analytics Lab 5 Nov 07, 2022
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
ZeroVL - The official implementation of ZeroVL

This repository contains source code necessary to reproduce the results presente

31 Nov 04, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
NIMA: Neural IMage Assessment

PyTorch NIMA: Neural IMage Assessment PyTorch implementation of Neural IMage Assessment by Hossein Talebi and Peyman Milanfar. You can learn more from

Kyryl Truskovskyi 293 Dec 30, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023