SEJE Pytorch implementation

Related tags

Deep LearningSEJE
Overview

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

Contents

  1. Instroduction
  2. Installation
  3. Recipe1M Dataset
  4. Vision models
  5. Out-of-the-box training
  6. Training
  7. Testing
  8. Contact

Introduction

Overview: SEJE is a two-phase deep feature engineering framework for efficient learning of semantics enhanced joint embedding, which clearly separates the deep feature engineering in data preprocessing from training the text-image joint embedding model. We use the Recipe1M dataset for the technical description and empirical validation. In preprocessing, we perform deep feature engineering by combining deep feature engineering with semantic context features derived from raw text-image input data. We leverage LSTM to identify key terms, deep NLP models from the BERT family, TextRank, or TF-IDF to produce ranking scores for key terms before generating the vector representation for each key term by using word2vec. We leverage wideResNet50 and word2vec to extract and encode the image category semantics of food images to help semantic alignment of the learned recipe and image embeddings in the joint latent space. In joint embedding learning, we perform deep feature engineering by optimizing the batch-hard triplet loss function with soft-margin and double negative sampling, taking into account also the category-based alignment loss and discriminator-based alignment loss. Extensive experiments demonstrate that our SEJE approach with deep feature engineering significantly outperforms the state-of-the-art approaches.

SEJE Architecture

SEJE Phase I Architecture and Examples

SEJE Phase II Architecture

SEJE Joint Embedding Optimization with instance-class double hard sampling strategy

SEJE Joint Embedding Optimization with discriminator based alignment loss regularization

SEJE Experimental Evaluation Highlights

Installation

We use the environment with Python 3.7.6 and Pytorch 1.4.0. Run pip install --upgrade cython and then install the dependencies with pip install -r requirements.txt. Our work is an extension of im2recipe.

Recipe1M Dataset

The Recipe1M dataset is available for download here, where you can find some code used to construct the dataset and get the structured recipe text, food images, pre-trained instruction featuers and so on.

Vision models

This current version of the code uses a pre-trained ResNet-50.

Out-of-the-box training

To train the model, you will need to create following files:

  • data/train_lmdb: LMDB (training) containing skip-instructions vectors, ingredient ids and categories.
  • data/train_keys: pickle (training) file containing skip-instructions vectors, ingredient ids and categories.
  • data/val_lmdb: LMDB (validation) containing skip-instructions vectors, ingredient ids and categories.
  • data/val_keys: pickle (validation) file containing skip-instructions vectors, ingredient ids and categories.
  • data/test_lmdb: LMDB (testing) containing skip-instructions vectors, ingredient ids and categories.
  • data/test_keys: pickle (testing) file containing skip-instructions vectors, ingredient ids and categories.
  • data/text/vocab.txt: file containing all the vocabulary found within the recipes.

Recipe1M LMDBs and pickle files can be found in train.tar, val.tar and test.tar. here

It is worth mentioning that the code is expecting images to be located in a four-level folder structure, e.g. image named 0fa8309c13.jpg can be found in ./data/images/0/f/a/8/0fa8309c13.jpg. Each one of the Tar files contains the first folder level, 16 in total.

The pre-trained TFIDF vectors for each recipe, image category feature for each image and the optimized category label for each image-recipe pair can be found in id2tfidf_vec.pkl, id2img_101_cls_vec.pkl and id2class_1005.pkl respectively.

Word2Vec

Training word2vec with recipe data:

  • Download and compile word2vec
  • Train with:
./word2vec -hs 1 -negative 0 -window 10 -cbow 0 -iter 10 -size 300 -binary 1 -min-count 10 -threads 20 -train tokenized_text.txt -output vocab.bin

The pre-trained word2vec model can be found in vocab.bin.

Training

  • Train the model with:
CUDA_VISIBLE_DEVICES=0 python train.py 

We did the experiments with batch size 100, which takes about 11 GB memory.

Testing

  • Test the trained model with
CUDA_VISIBLE_DEVICES=0 python test.py
  • The results will be saved in results, which include the MedR result and recall scores for the recipe-to-image retrieval and image-to-recipe retrieval.
  • Our best model trained with Recipe1M (TSC paper) can be downloaded here.

Contact

We are continuing the development and there is ongoing work in our lab regarding cross-modal retrieval between cooking recipes and food images. For any questions or suggestions you can use the issues section or reach us at [email protected].

Lead Developer: Zhongwei Xie, Georgia Institute of Technology

Advisor: Prof. Dr. Ling Liu, Georgia Institute of Technology

If you use our code, please cite

[1] Zhongwei Xie, Ling Liu, Yanzhao Wu, et al. Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering[J]//ACM Transactions on Information Systems (TOIS).

[2] Zhongwei Xie, Ling Liu, Lin Li, et al. Efficient Deep Feature Calibration for Cross-Modal Joint Embedding Learning[C]//Proceedings of the 2021 International Conference on Multimodal Interaction. 2021: 43-51.

Code repo for realtime multi-person pose estimation in CVPR'17 (Oral)

Realtime Multi-Person Pose Estimation By Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. Introduction Code repo for winning 2016 MSCOCO Keypoints Cha

Zhe Cao 4.9k Dec 31, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
Chainer implementation of recent GAN variants

Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score

399 Oct 23, 2022
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
ML From Scratch

ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision

Tanishq Gautam 66 Nov 02, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021