Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Overview

Torch Time Stretch

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

View on PyPI / View Documentation

Publish to PyPI Run tests PyPI version Number of downloads from PyPI per month Python version support Code Style: Black

About

This package includes two main features:

  • Time-stretch audio clips quickly using PyTorch (with CUDA support)
  • Calculate efficient time-stretch targets (useful for augmentation, where speed is more important than precise time-stretches)

Also check out torch-pitch-shift, a sister project for pitch-shifting.

Installation

pip install torch-time-stretch

Usage

Example

Check out example.py to see torch-time-stretch in action!

Documentation

See the documentation page for detailed documentation!

Contributing

Please feel free to submit issues or pull requests!

You might also like...
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Several simple examples for popular neural network toolkits calling custom CUDA operators.
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We have upgraded the point cloud modules of SPH3D-GCN from homogeneous to heterogeneous representations, and included the upgraded modules into this latest work as well. We are happy to announce that the work is accepted to IEEE CVPR2021.

Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Comments
  • RuntimeError: The size of tensor a (40264) must match the size of tensor b (173) at non-singleton dimension 1

    RuntimeError: The size of tensor a (40264) must match the size of tensor b (173) at non-singleton dimension 1

    I use same code in https://github.com/KentoNishi/torch-time-stretch/blob/master/example.py but get below error

    (librosa) ➜  torch-time-stretch git:(master) ✗ python example.py 
    Traceback (most recent call last):
      File "/home/jackie/code/github/torch-time-stretch/example.py", line 48, in <module>
        test_time_stretch_2_up()
      File "/home/jackie/code/github/torch-time-stretch/example.py", line 20, in test_time_stretch_2_up
        up = time_stretch(sample, Fraction(1, 2), SAMPLE_RATE)
      File "/home/jackie/code/github/torch-time-stretch/torch_time_stretch/main.py", line 116, in time_stretch
        output = stretcher(output)
      File "/home/jackie/anaconda3/envs/librosa/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/jackie/anaconda3/envs/librosa/lib/python3.9/site-packages/torchaudio/transforms/_transforms.py", line 1059, in forward
        return F.phase_vocoder(complex_specgrams, rate, self.phase_advance)
      File "/home/jackie/anaconda3/envs/librosa/lib/python3.9/site-packages/torchaudio/functional/functional.py", line 743, in phase_vocoder
        phase = angle_1 - angle_0 - phase_advance
    RuntimeError: The size of tensor a (40264) must match the size of tensor b (173) at non-singleton dimension 1
    
    opened by Jackiexiao 4
  • Example ratios are reversed.

    Example ratios are reversed.

    Love it, thanks for making this! Tiny thing: In the example test_time_stretch_2_up should use 1/2 as a ratio, not 2/1. test_time_stretch_2_down should use that 2/1 (it's stretching the clip length by 2x).

    opened by hdemmer 1
  • Does it with mono-channel wav files?

    Does it with mono-channel wav files?

    my audio clip is in mono 16khz audio, [ 0 0 0 ... 63 100 127], so it will throw

    ---> 15 down = time_stretch(sample, Fraction(2, 1), SAMPLE_RATE)
         16 wavfile.write(
         17     "./stretched_down_2.wav",
         18     SAMPLE_RATE,
         19     np.swapaxes(down.cpu()[0].numpy(), 0, 0).astype(dtype),
         20 )
    
    File /opt/conda/envs/classify-audio/lib/python3.9/site-packages/torch_time_stretch/main.py:108, in time_stretch(input, stretch, sample_rate, n_fft, hop_length)
        106 if not hop_length:
        107     hop_length = n_fft // 32
    --> 108 batch_size, channels, samples = input.shape
        109 # resampler = T.Resample(sample_rate, int(sample_rate / stretch)).to(input.device)
        110 output = input
    
    ValueError: not enough values to unpack (expected 3, got 2)
    
    opened by ti3x 0
Releases(v1.0.3)
Owner
Kento Nishi
17-year-old programmer at Lynbrook High School, with strong interests in AI/Machine Learning. Open source developer and researcher at the Four Eyes Lab.
Kento Nishi
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
Double pendulum simulator using a symplectic Euler's method and Hamiltonian mechanics

Symplectic Double Pendulum Simulator Double pendulum simulator using a symplectic Euler's method. The program calculates the momentum and position of

Scott Marino 1 Jan 12, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022
Pytorch implementation of our paper accepted by NeurIPS 2021 -- Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) (Link) Overview Prerequisites Linu

Shaojie Li 34 Mar 31, 2022
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다.

ObsCare_Main 소개 공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다. CCTV의 대수가 급격히 늘어나면서 관리와 효율성 문제와 더불어, 곳곳에 설치된 CCTV를 개별 관제하는 것으로는 응급 상

5 Jul 07, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem Installation To install nece

31 Apr 19, 2022