Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Overview

Torch Time Stretch

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

View on PyPI / View Documentation

Publish to PyPI Run tests PyPI version Number of downloads from PyPI per month Python version support Code Style: Black

About

This package includes two main features:

  • Time-stretch audio clips quickly using PyTorch (with CUDA support)
  • Calculate efficient time-stretch targets (useful for augmentation, where speed is more important than precise time-stretches)

Also check out torch-pitch-shift, a sister project for pitch-shifting.

Installation

pip install torch-time-stretch

Usage

Example

Check out example.py to see torch-time-stretch in action!

Documentation

See the documentation page for detailed documentation!

Contributing

Please feel free to submit issues or pull requests!

You might also like...
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Several simple examples for popular neural network toolkits calling custom CUDA operators.
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We have upgraded the point cloud modules of SPH3D-GCN from homogeneous to heterogeneous representations, and included the upgraded modules into this latest work as well. We are happy to announce that the work is accepted to IEEE CVPR2021.

Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Comments
  • RuntimeError: The size of tensor a (40264) must match the size of tensor b (173) at non-singleton dimension 1

    RuntimeError: The size of tensor a (40264) must match the size of tensor b (173) at non-singleton dimension 1

    I use same code in https://github.com/KentoNishi/torch-time-stretch/blob/master/example.py but get below error

    (librosa) ➜  torch-time-stretch git:(master) ✗ python example.py 
    Traceback (most recent call last):
      File "/home/jackie/code/github/torch-time-stretch/example.py", line 48, in <module>
        test_time_stretch_2_up()
      File "/home/jackie/code/github/torch-time-stretch/example.py", line 20, in test_time_stretch_2_up
        up = time_stretch(sample, Fraction(1, 2), SAMPLE_RATE)
      File "/home/jackie/code/github/torch-time-stretch/torch_time_stretch/main.py", line 116, in time_stretch
        output = stretcher(output)
      File "/home/jackie/anaconda3/envs/librosa/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/jackie/anaconda3/envs/librosa/lib/python3.9/site-packages/torchaudio/transforms/_transforms.py", line 1059, in forward
        return F.phase_vocoder(complex_specgrams, rate, self.phase_advance)
      File "/home/jackie/anaconda3/envs/librosa/lib/python3.9/site-packages/torchaudio/functional/functional.py", line 743, in phase_vocoder
        phase = angle_1 - angle_0 - phase_advance
    RuntimeError: The size of tensor a (40264) must match the size of tensor b (173) at non-singleton dimension 1
    
    opened by Jackiexiao 4
  • Example ratios are reversed.

    Example ratios are reversed.

    Love it, thanks for making this! Tiny thing: In the example test_time_stretch_2_up should use 1/2 as a ratio, not 2/1. test_time_stretch_2_down should use that 2/1 (it's stretching the clip length by 2x).

    opened by hdemmer 1
  • Does it with mono-channel wav files?

    Does it with mono-channel wav files?

    my audio clip is in mono 16khz audio, [ 0 0 0 ... 63 100 127], so it will throw

    ---> 15 down = time_stretch(sample, Fraction(2, 1), SAMPLE_RATE)
         16 wavfile.write(
         17     "./stretched_down_2.wav",
         18     SAMPLE_RATE,
         19     np.swapaxes(down.cpu()[0].numpy(), 0, 0).astype(dtype),
         20 )
    
    File /opt/conda/envs/classify-audio/lib/python3.9/site-packages/torch_time_stretch/main.py:108, in time_stretch(input, stretch, sample_rate, n_fft, hop_length)
        106 if not hop_length:
        107     hop_length = n_fft // 32
    --> 108 batch_size, channels, samples = input.shape
        109 # resampler = T.Resample(sample_rate, int(sample_rate / stretch)).to(input.device)
        110 output = input
    
    ValueError: not enough values to unpack (expected 3, got 2)
    
    opened by ti3x 0
Releases(v1.0.3)
Owner
Kento Nishi
17-year-old programmer at Lynbrook High School, with strong interests in AI/Machine Learning. Open source developer and researcher at the Four Eyes Lab.
Kento Nishi
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
Behavioral "black-box" testing for recommender systems

RecList RecList Free software: MIT license Documentation: https://reclist.readthedocs.io. Overview RecList is an open source library providing behavio

Jacopo Tagliabue 375 Dec 30, 2022
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
Automatic detection and classification of Covid severity degree in LUS (lung ultrasound) scans

Final-Project Final project in the Technion, Biomedical faculty, by Mor Ventura, Dekel Brav & Omri Magen. Subproject 1: Automatic Detection of LUS Cha

Mor Ventura 1 Dec 18, 2021
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
A curated list of awesome deep long-tailed learning resources.

A curated list of awesome deep long-tailed learning resources.

vanint 210 Dec 25, 2022
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
Acute ischemic stroke dataset

AISD Acute ischemic stroke dataset contains 397 Non-Contrast-enhanced CT (NCCT) scans of acute ischemic stroke with the interval from symptom onset to

Kongming Liang 21 Sep 06, 2022
Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Shoaib ahmed 1 Dec 26, 2021