pyspark🍒🥭 is delicious,just eat it!😋😋

Overview

如何用10天吃掉pyspark? 🔥 🔥

《10天吃掉那只pyspark》

《20天吃掉那只Pytorch》

《30天吃掉那只TensorFlow2》

一,pyspark 🍎 or spark-scala 🔥 ?

pyspark强于分析,spark-scala强于工程。

如果应用场景有非常高的性能需求,应该选择spark-scala.

如果应用场景有非常多的可视化和机器学习算法需求,推荐使用pyspark,可以更好地和python中的相关库配合使用。

此外spark-scala支持spark graphx图计算模块,而pyspark是不支持的。


pyspark学习曲线平缓,spark-scala学习曲线陡峭。

从学习成本来说,spark-scala学习曲线陡峭,不仅因为scala是一门困难的语言,更加因为在前方的道路上会有无尽的环境配置痛苦等待着读者。

而pyspark学习成本相对较低,环境配置相对容易。从学习成本来说,如果说pyspark的学习成本是3,那么spark-scala的学习成本大概是9。

如果读者有较强的学习能力和充分的学习时间,建议选择spark-scala,能够解锁spark的全部技能,并获得最优性能,这也是工业界最普遍使用spark的方式。

如果读者学习时间有限,并对Python情有独钟,建议选择pyspark。pyspark在工业界的使用目前也越来越普遍。


二,本书 📚 面向读者 🤗

本书假定读者具有基础的的Python编码能力,熟悉Python中numpy, pandas库的基本用法。

并且假定读者具有一定的SQL使用经验,熟悉select,join,group by等sql语法。

对于Python基础不是非常扎实的读者,可以参考《3小时Python入门》文章。

《3小时Python入门》

对于numpy和Pandas不甚了解的读者,可以参考 《3小时入门numpy,pandas,matplotlib》文章。

《3小时入门numpy,pandas,matplotlib》


三,本书写作风格 🍉

本书是一本对人类用户极其友善的pyspark入门工具书,Don't let me think是本书的最高追求。

本书主要是在参考spark官方文档,并结合作者学习使用经验基础上整理总结写成的。

不同于Spark官方文档的繁冗断码,本书在篇章结构和范例选取上做了大量的优化,在用户友好度方面更胜一筹。

本书按照内容难易程度、读者检索习惯和spark自身的层次结构设计内容,循序渐进,层次清晰,方便按照功能查找相应范例。

本书在范例设计上尽可能简约化和结构化,增强范例易读性和通用性,大部分代码片段在实践中可即取即用。

如果说通过学习spark官方文档掌握pyspark的难度大概是5,那么通过本书学习掌握pyspark的难度应该大概是2.

仅以下图对比spark官方文档与本书《10天吃掉那只pyspark》的差异。


四,本书学习方案

1,学习计划

本书是作者利用工作之余大概1个月写成的,大部分读者应该在10天可以完全学会。

预计每天花费的学习时间在30分钟到2个小时之间。

当然,本书也非常适合作为pyspark的工具手册在工程落地时作为范例库参考。

点击学习内容蓝色标题即可进入该章节。

日期 学习内容 内容难度 预计学习时间 更新状态
  一、基础篇      
day1 1-1,快速搭建你的Spark开发环境 ⭐️ ⭐️ 1hour
day2 1-2,1小时看懂Spark的基本原理 ⭐️ ⭐️ ⭐️ 1hour
  二、核心篇      
day3 2-1,2小时入门Spark之RDD编程 ⭐️ ⭐️ ⭐️ 2hour
day4 2-2,7道RDD编程练习题 ⭐️ ⭐️ ⭐️ 1hour
day5 2-3,2小时入门SparkSQL编程 ⭐️ ⭐️ ⭐️ 2hour
day6 2-4,7道SparkSQL编程练习题 ⭐️ ⭐️ ⭐️ 1hour
  三、进阶篇      
day7 3-1,Spark性能调优方法 ⭐️ ⭐️ ⭐️ ⭐️ ⭐️ 2hour
day8 3-2,RDD和SparkSQL综合应用 ⭐️ ⭐️ ⭐️ ⭐️ ⭐️ 2hour
  四、拓展篇      
day9 4-1,探索MLlib机器学习 ⭐️ ⭐️ ⭐️ ⭐️ 2hour
day10 4-2,初识StructuredStreaming ⭐️ ⭐️ ⭐️ ⭐️ 2hour

2,学习环境

本书全部源码在jupyter中编写测试通过,建议通过git克隆到本地,并在jupyter中交互式运行学习。

为了直接能够在jupyter中打开markdown文件,建议安装jupytext,将markdown转换成ipynb文件。

为简单起见,本书按照如下2个步骤配置单机版spark3.0.1环境进行练习。

step1: 安装java8

jdk下载地址:https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

java安装教程:https://www.runoob.com/java/java-environment-setup.html

step2: 安装pyspark,findspark

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyspark

pip install findspark

此外,也可以在kesci云端notebook中直接运行pyspark

https://www.kesci.com/home/project

import findspark

#指定spark_home,指定python路径
spark_home = "/Users/liangyun/anaconda3/lib/python3.7/site-packages/pyspark"
python_path = "/Users/liangyun/anaconda3/bin/python"
findspark.init(spark_home,python_path)

import pyspark 
from pyspark import SparkContext, SparkConf
conf = SparkConf().setAppName("test").setMaster("local[4]")
sc = SparkContext(conf=conf)

print("spark version:",pyspark.__version__)
rdd = sc.parallelize(["hello","spark"])
print(rdd.reduce(lambda x,y:x+' '+y))
spark version: 3.0.1
hello spark

除了以上方法外,也可以参考1-1节中介绍的其它方法。

1-1,快速搭建你的Spark开发环境


五,鼓励和联系作者

如果本书对你有所帮助,想鼓励一下作者,记得给本项目加一颗星星star ⭐️ ,并分享给你的朋友们喔 😊 !

如果对本书内容理解上有需要进一步和作者交流的地方,欢迎在公众号"算法美食屋"下留言。作者时间和精力有限,会酌情予以回复。

也可以在公众号后台回复关键字:spark加群,加入spark和大数据读者交流群和大家讨论。

image.png


Owner
lyhue1991
dream-->design-->deliever😋😋
lyhue1991
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
Ego4d dataset repository. Download the dataset, visualize, extract features & example usage of the dataset

Ego4D EGO4D is the world's largest egocentric (first person) video ML dataset and benchmark suite, with 3,600 hrs (and counting) of densely narrated v

Meta Research 118 Jan 07, 2023
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

196 Jan 05, 2023
An implementation of the paper "A Neural Algorithm of Artistic Style"

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art

Srijarko Roy 27 Sep 20, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
GrailQA: Strongly Generalizable Question Answering

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It ca

OSU DKI Lab 76 Dec 21, 2022
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC).

EMTAUC We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC). In this code, SBGA is considered a ba

7 Nov 24, 2022
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
JupyterNotebook - C/C++, Javascript, HTML, LaTex, Shell scripts in Jupyter Notebook Also run them on remote computer

JupyterNotebook Read, write and execute C, C++, Javascript, Shell scripts, HTML, LaTex in jupyter notebook, And also execute them on remote computer R

1 Jan 09, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022