PyTorch implementation of probabilistic deep forecast applied to air quality.

Overview

Probabilistic Deep Forecast

PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting arXiv.

Introduction

In this work, we develop a set of deep probabilistic models for air quality forecasting that quantify both aleatoric and epistemic uncertainties and study how to represent and manipulate their predictive uncertainties. In particular: * We conduct a broad empirical comparison and exploratory assessment of state-of-the-art techniques in deep probabilistic learning applied to air quality forecasting. Through exhaustive experiments, we describe training these models and evaluating their predictive uncertainties using various metrics for regression and classification tasks. * We improve uncertainty estimation using adversarial training to smooth the conditional output distribution locally around training data points. * We apply uncertainty-aware models that exploit the temporal and spatial correlation inherent in air quality data using recurrent and graph neural networks. * We introduce a new state-of-the-art example for air quality forecasting by defining the problem setup and selecting proper input features and models.

drawing
Decision score as a function of normalized aleatoric and epistemic confidence thresholds . See animation video here

Installation

install probabilistic_forecast' locally in “editable” mode ( any changes to the original package would reflect directly in your environment, os you don't have to re-insall the package every time you make some changes):

pip install -e .

Use the configuration file equirements.txt to the install the required packages to run this project.

File Structure

.
├── probabilistic_forecast/
│   ├── bnn.py (class definition for the Bayesian neural networks model)
│   ├── ensemble.py (class definition for the deep ensemble model)
│   ├── gnn_mc.py (class definition for the graph neural network model with MC dropout)
│   ├── lstm_mc.py (class definition for the LSTM model with MC dropout)
│   ├── nn_mc.py (class definition for the standard neural network model with MC droput)
│   ├── nn_standard.py (class definition for the standard neural network model without MC dropout)
│   ├── swag.py (class definition for the SWAG model)
│   └── utils/
│       ├── data_utils.py (utility functions for data loading and pre-processing)
│       ├── gnn_utils.py (utility functions for GNN)
│       ├── plot_utils.py (utility functions for plotting training and evaluation results)
│       ├── swag_utils.py  (utility functions for SWAG)
│       └── torch_utils.py (utility functions for torch dataloader, checking if CUDA is available)
├── dataset/
│   ├── air_quality_measurements.csv (dataset of air quality measurements)
│   ├── street_cleaning.csv  (dataset of air street cleaning records)
│   ├── traffic.csv (dataset of traffic volumes)
│   ├── weather.csv  (dataset of weather observations)
│   └── visualize_data.py  (script to visualize all dataset)
├── main.py (main function with argument parsing to load data, build a model and evaluate (or train))
├── tests/
│   └── confidence_reliability.py (script to evaluate the reliability of confidence estimates of pretrained models)
│   └── epistemic_vs_aleatoric.py (script to show the impact of quantifying both epistemic and aleatoric uncertainties)
├── plots/ (foler containing all evaluation plots)
├── pretrained/ (foler containing pretrained models and training curves plots)
├── evaluate_all_models.sh (bash script for evaluating all models at once)
└── train_all_models.sh (bash script for training all models at once)

Evaluating Pretrained Models

Evaluate a pretrained model, for example:

python main.py --model=SWAG --task=regression --mode=evaluate  --adversarial_training

or evaluate all models:

bash evaluate_all_models.sh
drawing
PM-value regression using Graph Neural Network with MC dropout

Threshold-exceedance prediction

drawing
Threshold-exceedance prediction using Bayesian neural network (BNN)

Confidence Reliability

To evaluate the confidence reliability of the considered probabilistic models, run the following command:

python tests/confidence_reliability.py

It will generate the following plots:

drawing
Confidence reliability of probabilistic models in PM-value regression task in all monitoring stations.
drawing
Confidence reliability of probabilistic models in threshold-exceedance prediction task in all monitoring stations.

Epistemic and aleatoric uncertainties in decision making

To evaluate the impact of quantifying both epistemic and aleatoric uncertainties in decision making, run the following command:

python tests/epistemic_vs_aleatoric.py

It will generate the following plots:

Decision score in a non-probabilistic model
as a function of only aleatoric confidence.
Decision score in a probabilistic model as a function
of both epistemic and aleatoric confidences.
drawing drawing

It will also generate an .vtp file, which can be used to generate a 3D plot with detailed rendering and lighting in ParaView.

Training Models

Train a single model, for example:

python main.py --model=SWAG --task=regression --mode=train --n_epochs=3000 --adversarial_training

or train all models:

bash train_all_models.sh
drawing
Learning curve of training a BNNs model to forecast PM-values. Left: negative log-likelihood loss,
Center: KL loss estimated using MC sampling, Right: learning rate of exponential decay.

Dataset

Run the following command to visualize all data

python dataset/visualize_data.py

It will generate plots in the "dataset folder". For example:

drawing
Air quality level over two years in one representative monitoring station (Elgeseter) in Trondheim, Norway

Attribution

Owner
Abdulmajid Murad
PhD Student, Faculty of Information Technology and Electrical Engineering, NTNU
Abdulmajid Murad
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022
Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

1 Feb 09, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f

Yongrui Chen 5 Nov 10, 2022
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023