[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

Overview

RegionProxy

Figure 2. Performance vs. GFLOPs on ADE20K val split.

Semantic Segmentation by Early Region Proxy

Yifan Zhang, Bo Pang, Cewu Lu

CVPR 2022 (Poster) [arXiv]

Installation

Note: recommend using the exact version of the packages to avoid running issues.

  1. Install PyTorch 1.7.1 and torchvision 0.8.2 following the official guide.

  2. Install timm 0.4.12 and einops:

    pip install timm==0.4.12 einops
    
  3. This project depends on mmsegmentation 0.17 and mmcv 1.3.13, so you may follow its instructions to setup environment and prepare datasets.

Models

ADE20K

backbone Resolution FLOPs #params. mIoU mIoU (ms+flip) FPS download
ViT-Ti/16 512x512 3.9G 5.8M 42.1 43.1 38.9 [model]
ViT-S/16 512x512 15G 22M 47.6 48.5 32.1 [model]
R26+ViT-S/32 512x512 16G 36M 47.8 49.1 28.5 [model]
ViT-B/16 512x512 59G 87M 49.8 50.5 20.1 [model]
R50+ViT-L/32 640x640 82G 323M 51.0 51.7 12.7 [model]
ViT-L/16 640x640 326G 306M 52.9 53.4 6.6 [model]

Cityscapes

backbone Resolution FLOPs #params. mIoU mIoU (ms+flip) download
ViT-Ti/16 768x768 69G 6M 76.5 77.7 [model]
ViT-S/16 768x768 270G 23M 79.8 81.5 [model]
ViT-B/16 768x768 1064G 88M 81.0 82.2 [model]
ViT-L/16 768x768 - 307M 81.4 82.7 [model]

Evaluation

You may evaluate the model on single GPU by running:

python test.py \
	--config configs/regproxy_ade20k/regproxy-t16-sub4+implicit-mid-4+512x512+160k+adamw-poly+ade20k.py \
	--checkpoint /path/to/ckpt \
	--eval mIoU

To evaluate on multiple GPUs, run:

python -m torch.distributed.launch --nproc_per_node 8 test.py \
	--launcher pytorch \
	--config configs/regproxy_ade20k/regproxy-t16-sub4+implicit-mid-4+512x512+160k+adamw-poly+ade20k.py \
	--checkpoint /path/to/ckpt 
	--eval mIoU

You may add --aug-test to enable multi-scale + flip evaluation. The test.py script is mostly copy-pasted from mmsegmentation. Please refer to this link for more usage (e.g., visualization).

Training

The first step is to prepare the pre-trained weights. Following Segmenter, we use AugReg pre-trained weights on our tiny, small and large models, and we use DeiT pre-trained weights on our base models. Do following steps to prepare the pre-trained weights for model initialization:

  1. For DeiT weight, simply download from this link. For AugReg weights, first acquire the timm-style models:

    import timm
    m = timm.create_model('vit_tiny_patch16_384', pretrained=True)

    The full list of entries can be found here (vanilla ViTs) and here (hybrid models).

  2. Convert the timm models to mmsegmentation style using this script.

We train all models on 8 V100 GPUs. For example, to train RegProxy-Ti/16, run:

python -m torch.distributed.launch --nproc_per_node 8 train.py 
	--launcher pytorch \
	--config configs/regproxy_ade20k/regproxy-t16-sub4+implicit-mid-4+512x512+160k+adamw-poly+ade20k.py \
	--work-dir /path/to/workdir \
	--options model.pretrained=/path/to/pretrained/model

You may need to adjust data.samples_per_gpu if you plan to train on less GPUs. Please refer to this link for more training optioins.

Citation

@article{zhang2022semantic,
  title={Semantic Segmentation by Early Region Proxy},
  author={Zhang, Yifan and Pang, Bo and Lu, Cewu},
  journal={arXiv preprint arXiv:2203.14043},
  year={2022}
}
Owner
Yifan
Yifan
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022
CT-Net: Channel Tensorization Network for Video Classification

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification @inproceedings{ li2021ctnet, title={{\{}CT{\}}-Net: Channel Tensorization Ne

33 Nov 15, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022