[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

Overview

RegionProxy

Figure 2. Performance vs. GFLOPs on ADE20K val split.

Semantic Segmentation by Early Region Proxy

Yifan Zhang, Bo Pang, Cewu Lu

CVPR 2022 (Poster) [arXiv]

Installation

Note: recommend using the exact version of the packages to avoid running issues.

  1. Install PyTorch 1.7.1 and torchvision 0.8.2 following the official guide.

  2. Install timm 0.4.12 and einops:

    pip install timm==0.4.12 einops
    
  3. This project depends on mmsegmentation 0.17 and mmcv 1.3.13, so you may follow its instructions to setup environment and prepare datasets.

Models

ADE20K

backbone Resolution FLOPs #params. mIoU mIoU (ms+flip) FPS download
ViT-Ti/16 512x512 3.9G 5.8M 42.1 43.1 38.9 [model]
ViT-S/16 512x512 15G 22M 47.6 48.5 32.1 [model]
R26+ViT-S/32 512x512 16G 36M 47.8 49.1 28.5 [model]
ViT-B/16 512x512 59G 87M 49.8 50.5 20.1 [model]
R50+ViT-L/32 640x640 82G 323M 51.0 51.7 12.7 [model]
ViT-L/16 640x640 326G 306M 52.9 53.4 6.6 [model]

Cityscapes

backbone Resolution FLOPs #params. mIoU mIoU (ms+flip) download
ViT-Ti/16 768x768 69G 6M 76.5 77.7 [model]
ViT-S/16 768x768 270G 23M 79.8 81.5 [model]
ViT-B/16 768x768 1064G 88M 81.0 82.2 [model]
ViT-L/16 768x768 - 307M 81.4 82.7 [model]

Evaluation

You may evaluate the model on single GPU by running:

python test.py \
	--config configs/regproxy_ade20k/regproxy-t16-sub4+implicit-mid-4+512x512+160k+adamw-poly+ade20k.py \
	--checkpoint /path/to/ckpt \
	--eval mIoU

To evaluate on multiple GPUs, run:

python -m torch.distributed.launch --nproc_per_node 8 test.py \
	--launcher pytorch \
	--config configs/regproxy_ade20k/regproxy-t16-sub4+implicit-mid-4+512x512+160k+adamw-poly+ade20k.py \
	--checkpoint /path/to/ckpt 
	--eval mIoU

You may add --aug-test to enable multi-scale + flip evaluation. The test.py script is mostly copy-pasted from mmsegmentation. Please refer to this link for more usage (e.g., visualization).

Training

The first step is to prepare the pre-trained weights. Following Segmenter, we use AugReg pre-trained weights on our tiny, small and large models, and we use DeiT pre-trained weights on our base models. Do following steps to prepare the pre-trained weights for model initialization:

  1. For DeiT weight, simply download from this link. For AugReg weights, first acquire the timm-style models:

    import timm
    m = timm.create_model('vit_tiny_patch16_384', pretrained=True)

    The full list of entries can be found here (vanilla ViTs) and here (hybrid models).

  2. Convert the timm models to mmsegmentation style using this script.

We train all models on 8 V100 GPUs. For example, to train RegProxy-Ti/16, run:

python -m torch.distributed.launch --nproc_per_node 8 train.py 
	--launcher pytorch \
	--config configs/regproxy_ade20k/regproxy-t16-sub4+implicit-mid-4+512x512+160k+adamw-poly+ade20k.py \
	--work-dir /path/to/workdir \
	--options model.pretrained=/path/to/pretrained/model

You may need to adjust data.samples_per_gpu if you plan to train on less GPUs. Please refer to this link for more training optioins.

Citation

@article{zhang2022semantic,
  title={Semantic Segmentation by Early Region Proxy},
  author={Zhang, Yifan and Pang, Bo and Lu, Cewu},
  journal={arXiv preprint arXiv:2203.14043},
  year={2022}
}
Owner
Yifan
Yifan
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

犹在镜中 153 Dec 14, 2022
DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Böther 19 Nov 22, 2022
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label

Wouter Van Gansbeke 1.1k Dec 30, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

Benedek Rozemberczki 534 Dec 25, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
Camera calibration & 3D pose estimation tools for AcinoSet

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fre

African Robotics Unit 42 Nov 16, 2022
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022